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ABSTRACT 
 

 There have been many efforts to regenerate the threatened and declining dry eucalypt 

forests found within the Midlands of Tasmania. This pilot study was completed as part of a 

larger research project on eucalypt regeneration. Researchers need to know where recruits are 

most successful in order to appropriately place regeneration microsites. I have begun 

characterizing the baseline demography of a recently burnt remnant forest. I had two 

objectives: 1. to characterize the stand structure where recruits are successful, and 2. to 

describe where the recruits are within this structure.  

 Data on location, size, and life history stage of trees were collected in 12 study sites in 

a recently burnt, dry eucalypt forest. The data were analyzed using statistics on density, 

percent canopy cover, tree height, and basal area. A nearest neighbor analysis was executed 

to determine the effects of competition on the spatial distribution of Eucalyptus spp. Finally, 

an additive zone of influence analysis was used to relate the location of successful recruits to 

the overstorey adults.  

 Canopy coverage and the additive effect of zone of influence were the most important 

predictors of the location of successful recruits.  Most successful recruits were found in study 

sites with relatively low canopy cover and in areas where the overlap between adult zones of 

influence was minimal. Compared to saplings, the location of lignotuberous sprouts was 

better correlated with these areas of minimal overlap. My findings suggest that while 

competition has an influence on spatial distribution, other underlying factors are also 

important in shaping stand structure and determining successful recruitment.  
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ABBREVIATIONS & CLASSIFICATIONS 

Abbreviations: 

DBH: Diameter at breast height 

GIS: Geographic Information System(s) 

GPS: Global Positioning System 

ZOI: Zone of Influence 

N. site, N1-N4: Sites characterized as having no eucalypt seedlings and less than three 
eucalypt  saplings. 
 
Seed. site, Seed1 – Seed 4: Sites characterized as having at least one eucalypt seedling. 

Sap. site, Sap1-Sap4: Sites characterized as having saplings, three or more eucalyt saplings 
and no  eucalypt seedlings 
 

Classifications: 
 
Sprout: Has lignotuber, ≤1m tall,  no woody growth 
 
Sapling- Dependent on species: 
 Non Eucalypt: < 2 m tall, woody growth 
 Eucalypt: >1 m tall, < 10 cm DBH 
 
Adult Tree- Dependent on species: 
 Non Eucalypt:  ≥ 2 m tall 
 Eucalypt:: ≥ 10 cm DBH 
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I. INTRODUCTION 
 
A. The state of dry eucalypt forests  
 
 1. Anthropogenic effects:  For over 30, 000 years, humans have shaped the natural 

environment of Tasmania (McIntosh, Laffan, & Hewitt 2005). The dry eucalypt forests found 

within the Midlands are no exception to this paradigm. The reduction in dry eucalypt forests 

constitutes an extreme example of how land-use practices can degrade the environment.  The 

dry eucalypt forests in the Midlands bioregion are “one of the most poorly reserved forest 

communities in Tasmania.”  Hawkins (2005) 

 The Midlands region was the second rural area in Australia to be settled by 

Australians before 1825 (Fenshan 1989). Forests were extensively cleared for agriculture and 

infrastructure (Fenshan 1989). Following the clearing of land, weed invasion and stock 

grazing continued, and still continue, to degrade the environment (Hawkins 2005). Today, 

over 83% of the native vegetation has been replaced by alternative land-use practices 

(Fenshan 1989). Global climate change has also contributed to dry eucalypt forest 

degradation.  Hughes (2003).  By increasing drought events and decreasing annual rainfall in 

Tasmania, the moisture stress, which dry eucalypt forests already experience, is amplified by 

climate change (Resource Planning and Development Commission 2003).  

 
 2. Importance of conservation and management: Scattered remnants of dry eucalypt 

forests still exist in the Midlands. Although low in number, these remnants have high 

economic, ecological, and, as will be shown in this study, scientific value.  Sinden, Jones, and 

Fleming (1983) have described the economic value of eucalypt remnants in productive 

landscapes.  They explain that conserving patches of forest can decrease erosion and provide 

shelter for stock.  Without these patches, harvests are reduced and the land requires more 

intensive management. From an ecological standpoint, patches of forests provide habitat and 
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food for native fauna, and ecosystems services such as reduced erosion (Yates and Hobbs 

1997). The conservation of eucalypt forests, which sequester carbon, can also help slow 

global climate change (Private Forests Tasmania 2007).  

 Recognition of the importance of dry eucalypt forests has led to many regeneration 

efforts, including replanting trees and fencing programs designed to decrease grazing (Close 

& Davidson 2002). However, while Jurskis (2005) has shown that the suppression of fire is a 

significant cause of dry eucalypt forest decline, private land owners still regard fire as a 

disturbance which degrades the landscape. It is true that frequent high-intensity fires can have 

adverse effects on nutrient cycling and biodiversity (Conacher & Conacher 1995).  However, 

when used correctly, controlled low-intensity fire may have the potential to rehabilitate and 

stabilize eucalypt forest structure to pre-colonial conditions (Jurskis 2005).  

  
 3. The role of fire: The aboriginal people in Tasmania started to use fire over 24,000 

years ago in order to hunt and travel more efficiently (McIntosh, Laffan, & Hewitt 2005). 

Anthropogenic fires created woodland with an open structure and grassy understorey.  

(McIntosh, Laffan, and Hewitt 2005).  Within the midlands, trees gradually adapted to a fire 

frequency of 8 to 25 (Davidson, pers. comm.. 2008) In order to maintain health in native 

forests, the fire regime to which that forest is adapted has to be maintained.  The benefits of 

fire include greater seed dispersal through the more open vegetation (Vivian et al. 2008), 

temporary competitor removal (Yates, Hobbs, & Atkins 2000), stimulation of resprouting 

(Vivian et al. 2008), reduced litter biomass which can suppress seedling growth (Tolhurst et 

al. 1992), and the formation of seedling germination microsites (Bailey, Davidson & Close 

2008).  In summary, controlled low frequency fire can promote the success of Eucalyptus 

spp. recruits.  
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B. Providing a context: The larger study 

 1. Current Research: This pilot study was conducted for part of a larger research 

project on eucalypt regeneration conducted by Bailey (2007). The research project aims to 

identify the regeneration niche for eucalypts in dry eucalypt forests in the midlands . This 

knowledge can be used in restoration plantings so that  suitable microsites are recreated in 

degraded landscapes (Bailey 2007). Thus far, Bailey has focused on the characterizing the 

recruitment niche of Eucalyptus spp. (Davidson, pers. comm. 2008).In an region with a  

predominantly low-intensity fire regime, eucalypt regeneration niches occur in spots where 

there is a local intense burn in large logs in the forest floor.  As well as providing an  ash bed 

of increased nutrient availability, these niches provide protection from climatic extremes, and 

a more consistent water supply (Bailey, Davidson & Close 2008). From a previous study on 

Eucalyptus amygdalina, Hawksins (2005) has concluded that available seedbed is hugely 

important in determining regeneration success in the Midlands. However, in another study on 

E. delagatensis,  Battaglia & Reid (1993) found that a favorable microsite for seed 

germination is not necessarily a favorable site for seedling survival. Similarly, a favorable 

site for seedling survival may not be the same as a favorable site for recruit growth.  Bailey 

and Davidson want to investigate where these germination microsites should be located 

within the forest structure in order to best assure that, during restoration in degraded forest, 

manually established microsites will yield successful recruits.  

 
C. Overview of the pilot study 

 1. Purpose:   The purpose of this study is to investigate the demography of a remnant 

dry eucalypt forest which was recently burnt. By studying a relatively healthy native forest, a 

baseline can be developed which degraded patches of eucalypts can be compared to. Just as 

in human populations, plant demography is the study of populations, and specifically the 
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study of population age, density, and distribution (Merriam-Webster Online 2008). In this 

study, populations are sorted into two groups: non-eucalypt tree species and eucalypt species. 

Age can be difficult to determine in eucalypt species because lignotuberous sprouts can 

potentially persist on the forest floor for 50 years (Davidson, 2008, pers. comm). Therefore, 

as a substitute for age, I will use the life history stages of the trees. I recognize four stages: 

seedling, lignotuberous sprout, sapling, and adult tree (Williams & Woinarski 1994).  In my 

study, living lignotuberous sprouts and saplings are considered to be successful recruits. 

Ultimately, I will use statistics on population density and the distribution of life history stages 

to explore the demography of the forest.  

 2. Objectives: My objectives were two fold:  

 1. Characterize the stand structure where recruits are successful.  

 2. Describe where the recruits are within this structure.  

 
D. Stand Structure:  

 Stand structure is three dimensional: both lateral growth (understorey) and vertical 

growth (overstorey) need to be considered.  

 1. Understorey:  

 a. Non-eucalypt species: Often the understorey of a forest is disregarded when 

characterizing stand structure (McElhinny 2005). However, understorey species have been 

shown to have a significant influence on the success of seedlings. For example, Withers 

(1979) found that eucalypt seedlings were suppressed because the understorey Casuarina 

spp. reduced light penetration. Just like overstorey trees, understorey trees will also compete 

with recruits for nutrients and water (Canham, Lepage, & Coates 2004). Therefore, I 

hypothesize that as the density of understorey tree species decreases, the density of successful 

recruits will increase.   
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 b. Eucalypt species:  Eucalypt seedlings, lignotuberous sprouts, and saplings help to 

compose the understorey of the stand. Lignotuberous sprouts and saplings are both 

considered to be successful recruits because they are able to persist in the understorey and 

potentially become adults (Walters & Bell 2005). That is, an environment that is conducive to 

sapling growth should also be conducive to sprout growth. I hypothesize that the densities of 

three life history stages will increase or decrease concurrently.  

 
 2. Overstorey: Overstorey structure can be characterized using density of adult trees, 

% canopy coverage, % basal area, and total tree height (McElhinny 2005). Vivian et al. 

(2008) found that the density and basal area of adult trees had a strong negative correlation 

with seedling growth. They attributed this correlation to an increase in the level of resource 

competition by adult trees. The researchers also found that an increase in canopy coverage 

was correlated with a decrease in seedling height.  Similarly, Withers (1979) found that an 

increase in shading caused an increase of mortality in shade-intolerant Eucalyptus spp. 

Finally, tree height has also been found to be relative to competitive advantage in eucalypts: 

Relatively taller trees have a greater capacity to photosynthesize and their growth will be 

limited by their ability to access water and nutrients (Basset and White 2000).  Therefore, 

taller trees will suppress more recruits and cause a decrease in recruit density. All four 

overstorey structural attributes have been shown to be correlated with one another in hemlock 

and cedar (Canham, Lepage, & Coates 2004), and eucalypts (Bassett and White 2000). 

Therefore, I hypothesize that the density of successful recruits will increase as the overstorey 

structural attribute values decrease concurrently.  

 
E. Spatial Analysis  
 
 1. Spatial Distribution: The spatial distribution of individuals within a population 

often reflects underlying processes of competition and mortality (Perry, Miller, & Enright 
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2006, Vacek & Lepps 1996). By delineating the spatial distributions of separate life history 

stages, it is possible to infer what underlying processes are controlling their distribution.  

Clumped distribution in seedlings succession often occurs because of seed dispersal by wind 

and the lack of density-dependent mortality (Myster & Pickett 1992). Furthermore, seedlings 

are expected to be clumped in any available nutrient- rich ashbed microsites which support 

germination (Bailey, Davidson & Close 2008). Lignotuberous sprouts are unique as they do 

not represent one cohort within the stand. Rather, sprouts can range in age from 1-50 years 

old (Davidson, pers. comm. 2008). As such, their distribution is determined by numerous 

disturbance events which can be random in time and space. Lignotuberous sprouts are 

expected to be randomly distributed due to these underlying random processes (Perry, Miller, 

& Enright 2006). Following accession to sapling, there is a shift to a regular distribution as an 

individual grows and competes in a greater area for nutrients, light, and water (Christensen 

1977 and Sterner, Ribie, & Schatz 1986).  

 Such changes in spatial distribution were found in a demographic study of the 

savanna palm tree (Barot, Gignoux, & Menaut 1999). Researchers found that seedlings and 

juveniles were aggregated and attributed this aggregation to nutrient rich patches.  

Competition for these nutrients led to regularly distributed adults. Therefore, I hypothesize 

that Eucalyptus spp. will show a gradual progression from a clumped to regular distribution 

as it progresses from seedling to adult.  

 

2. Zone of Influence: Assuming that adults will be regularly distributed due to the 

large amounts of area that they compete in for light, water, and nutrients, it then follows that 

if recruits are found within these areas they will have to compete with the adults. Gates and 

Westcott (1981) describe the area in which every individual competes for resources as the 

zone of influence (ZOI). Resource competition will occur when ZOIs overlap. However, the 
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competition between successful understorey recruits and adults has been shown to be 

extremely asymmetric (Canham, Lepage, & Coates 2004).  Overstorey trees exert a 

competitive force that can suppress lignotuberous sprouts and saplings and lead to recruit 

mortality (Bauer et al. 2002). Therefore, it is expected that successful recruits will not be 

found under the ZOI of adult trees (Basset and White 2000). While simple in theory, a 

standard method for defining the ZOI of individuals has not been established (Berger, 

Hildenbrandt, & Grimm 2002). For example, Alsweis and Duessen (2005) use a function of 

basal area raised to a species-defined constant, while Bi and Jurskis (1997) use a function of 

canopy radius. In this pilot study, I will define the radius of adult ZOIs as the tree height of 

individuals. Some foresters use the rule that light demanding trees, such as eucalypts, need to 

be a full tree height away from any mature tree in order to grow well (Farm Forest Line 

2004).  As already described, height can also determine competitive advantage, with taller 

trees having a larger resource base (Bassett and White 2000). Therefore, I hypothesize that 

successful recruits will be found at least one tree height away from adults- outside of the 

ZOIs of adults. 
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II. METHODS 
 
A. Location:  Tom Gibson Nature Reserve is located in the midlands of Tasmania, 

approximately 100 km south of Launceston. . In the last 20 years, the average rainfall in the 

Midlands has fallen by 12-15% from 550 mm to 490 mm (Bureau of Metiorology, 2008) 

rainfall in the 12 months prior to study was 400-600 mm (Fensham 1989) (Figure 1a).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Study area in Tom Gibson Reserve, Tasmania.  
 a.) Location of Tom Gibson Reserve within Tasmania. Map indicates annual rainfall from 
the period of May 2007 to April 2008 (Australian Bureau of Meteorology 2008).  
 b.) Tom Gibson Reserve with inset frame showing location of study area (Tasmanian Parks 
and Wildlife Service 2003). 
 c.) Study sites within the burned area of Tom Gibson Reserve.  
 
 The reserve is protected under the Regional Forest Agreement and is legally classified 

as an “indicative place” because it contains rare remnant midlands flora (Aussie Heritage 

2007). These floras have been threatened by both past and current land-use practices and by 

global climate change.  (Aussie  Heritage 2007). It is characterized as a Eucalyptus 

amygdalina forest, and, as such, the tree community is made up of:  E. amygdalina (black 

peppermint), E. viminalis (white gum), Acacia spp. (hop wattle), Acacia dealbata (silver 
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wattle), Allocasuarina littoralis (black sheoak), Allocasuarina monilifera (necklace sheoak), 

Banksia marginata (silver banksias), and Exocarpos cupressiformis (common native cherry) 

(Dept. of Primary Industries and Water 2006).  The reserve is also a habitat for rare and 

threatened fauna. Species include the Bettongia lesueur (burrowing bettong), Theca betulae 

(brown hairstreak butterfly), Vombatus ursinus (common wombat), and Perameles gunnii, 

(eastern barred bandicoot) (Aussie Heritage 2007).  

 Controlled burns by the Tasmanian Parks and Wildlife Service were conducted in the 

southern region of the reserve in April 2003 (Tasmanian Parks and Wildlife Service 2007). 

Because the goal of my study was to investigate the post-fire demography of a tree 

community, where germination microsites would be found, the study area was located in the 

southeast corner of the burned region (Figure 1b).   

 
B. Data Collection:   

 Our study area encompassed a mosaic of gaps types.  In some gaps, seedlings but not 

saplings could be found. In others, saplings but not seedlings could be found. Finally, other 

sites were devoid of both seedlings and saplings.  In order to characterize which structural 

attributes best support the growth of recruits, we decided to compare the demography of these 

three gap types. It was considered more efficient to focus data collection on 12 individual 

sites which would be indicative of tree community structure following disturbance.   We 

collected data using Total Station surveying equipment at randomly selected sites from 16 – 

21 April, 2008. 

 
 1. Stratified Random Sampling: Within a 150 m x 300 m study area containing many 

gaps, the three different types of gaps (described above) were identified.  Four replicates of 

each gap type were then randomly sampled (as described below). Regions of the area that 
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were close to a road were considered to be affected by an edge and were not characteristic of 

the interior of the forest (Bassett & White 2000).  

 Every gap was characterized as having: 1. eucalypt seedlings, or 2. eucalypt saplings, 

or 3. neither eucalypt seedlings nor saplings.  Our visual survey encompassed an area with a 

~20 m radius around the center of each gap. 1: Seedling sites were chosen if at least one 

seedling was found within the 20 m radius. Any sites which had both sapling and seedlings 

were characterized as seedling sites. 2: Sapling sites were chosen if there were three or more 

saplings and no seedlings. Saplings were defined as having a diameter <10 cm at breast 

height (DBH). It should be noted that the third sapling site did contain a seedling which we 

did not see during our visual survey. 3: “Neither” sites were chosen if there were less than 

three saplings and no seedlings.  

 In total, we identified 4 seedling sites, 12 sapling sites, and 9 neither sites. At each of 

these sites we took the GPS coordinates of the center of the gap. We then assigned each site a 

number and randomly selected 4 neither sites (hereby referred to as N1 – N4) and 4 sapling 

sites (herby referred to as Sap1-Sap4). All 4 seedling sites had to be used (hereby referred to 

as Seed1-Seed4). Our study areas were approximately 40 meters in diameter and could not 

overlap and repeat spatial data. Therefore, if two selected sites were within 40 meters of each 

other, we had to choose another site. The final 12 randomly selected study sites are plotted in 

Figure 1c (above).   

 
 2. Surveying:  The boundary of the study site was defined by the second ring of adult 

trees around the gap.  If the second ring of adult trees fell within a 20 m radius from the 

center of the gap, we still recorded all individuals within this 20 m radius. We stationed the 

surveying equipment in the center of gap where there was no canopy coverage. The position 

of this station was recorded using GPS coordinates when accuracy was at least ± 4 m.  
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  Total Station Surveying equipment was used to record the location of every 

individual composing the tree community.  In order to be efficient with time, the average 

position (barycenter) and dimensions of all non-eucalypt sapling and tree clumps were 

recorded. Clumps were defined as being of the same species and life history stage and as 

having continuous foliage. We recorded the number of individuals in randomly selected 

clumps in order to attain an estimate of non-eucalypt understorey density. 

  In addition to spatial data, we also recorded a series of demographic and structural 

data: 

 Non eucalypt species: The species name and life history stage were recorded for every 

individual. Non eucalypt saplings were defined as < 2 m tall and adults were defined as ≥ 2 m 

tall.  Eucalypt species: Seedlings were distinguished from lignotuberous sprouts through the 

absence of a lignotuber. Lignotuberous sprouts were defined as being ≤1 m tall.   Eucalypt 

saplings were defined as individuals >1 m tall and <10 cm DBH. The locations of both alive 

and dead saplings and adult trees were recorded.  We also measured and recorded the 

diameter, height, and canopy radius of all adult eucalypt species. Height was estimated to the 

nearest 0.5 m using height poles. Canopy radius was recorded as the average lateral extent of 

foliage from the main stem. In order to simplify analysis, our method of recording canopy 

radius assumes that canopies were symmetrical and circular. 

B. Analysis:   

 My analysis included thorough use of a geographic information system (GIS) through 

the ArcGIS program. GIS is powerful way to analyze spatial data which has attached 

attributes in order to classify data and establish relationships between layers of data (MacKey 

1996).  It also allowed me to output map figures which can help the reader visualize and 

explore trends in spatial data which may be elusive when looking at quantitative measures 

alone (Perry et al. 2006). 
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 Point data taken from the total station was projected in WGS 1984, UTM Zone 55S. 

Prior to analyzing structural or spatial attributes of the tree community, I had to the area of 

each study site was found in order to correct for area and give a boundary for GIS to perform 

analysis in. The study boundary for each study site was created with a new polygon shapefile 

in GIS. I drew the polygon based on the following rules: 1. the polygon was convex; 2. the 

outermost trees were nodes of the polygon; 3. if lines connecting the nodes intercepted the 20 

m radius circle, the study boundary was extended to the arc of the circle until another node 

(adult tree) outside of this circle could be snapped to. After completing a study boundary 

polygon, I calculated the area (m2) through the calculate geometry function.  

 
 1. Structure: 

 a. Understorey: For non-eucalypt species, densities were estimated by multiplying the 

area of the clumps by the average number of species per clump, as discussed earlier. The 

densities of all individuals were corrected for area by dividing the calculated areas of 

respective study boundary polygons. I then multiplied densities (individuals/m2) by the area 

of the generic circular study site with a radius of 20m (1256.6 m2) to find the number of 

individuals per standard gap site. Doing so prevented me from presenting elusive data 

expressed in the number of individuals per square meter. The densities within each of the 

three study site types (N., Seed. and Sap.) were averaged and standard error was calculated 

using the equation SE=SD/√n, where n = the number of replicates (4).  An ANOVA was 

employed to determine if a significant difference (P<0.05) existed between the density of 

species or life history stages between the three site types (N. Seed. and Sap.). If a significant 

difference did exist, I used a student t-test to test which of the three sites differed from one 

another.  

 b. Overstorey: To find percent canopy coverage, I summed the canopy areas and 

divided by the area of the respective study boundaries. I then calculated the mean canopy 
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coverage per study site type. The same method was employed to find percent basal area and 

total tree height corrected for area (vertical m/m2).  

 
 2. Spatial analysis 

 a. Spatial Distribution:  In order to test for the spatial distribution of each individual 

life history stage, I had to separate the data into layers. To do so, I selected by attribute for 

data points which were distinguished as live seedlings, sprouts, saplings, and adult trees. I 

then used the nearest neighbor distance tool to determine the spatial distribution of the 

individual life history layers. The calculated distribution is based on the ratio of the observed 

average distance and the expected distance of every individual to its nearest neighbor as 

described by Clark and Evans (1954). It is important to note the necessity of defining a study 

area within the distance tool. With no defined area, the program analyses the points within 

the minimum area that encloses all the points. Therefore, individuals that may be clumped in 

a larger study area will appear to be uniform in the results (ERSI 2007). I defined the area by 

importing the study boundary polygons. Defining the study area also helped correct for the 

edge effect, where points outside the boundary will have fewer neighbors than those within 

the boundary (Perry et al. 2006).  

 b. Zone of Influence:  

 Preliminary analysis: To analyze where lignotuberous sprouts and saplings were 

located in respect to overstorey trees, I used a buffer analysis in GIS.  Using the buffer tool, 

two buffers were created around every individual adult, with radii equal to the canopy radius 

and the tree height. The buffers were exported as tree height buffer and canopy buffer 

polygons.  To find how many sprouts or saplings were within each buffer, I selected by 

location for sprouts and saplings that were contained by each buffer polygon. Because the 

number of individuals within the tree height buffer also included the number of individuals 

within the canopy radius buffer, I had to subtract the number of individuals within the canopy 
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radius buffer from the total number in the tree height buffer. I did not include any individuals 

outside the study area because there was not ample context to support an evaluation. That is, 

these individuals might have been within the tree height or canopy buffers of adult trees that 

were not surveyed. Finally, I found the percent of individuals within each buffer across all 12 

study sites. For clarification, an example of the buffer analysis methodology is shown in 

Figure 2.  

 

 

 

 

 

 

 

Figure 2.  Buffer analysis of N1. Every feature in the legend forms a separate layer.  Sprouts 
and dead adults are points, while adult trees, buffers, and the study boundary are polygons. In 
this analysis, 8 sprouts are contained within tree height buffers, 3 within canopy buffers, and 
1 outside the tree height buffer.  
 
 Preliminary results showed that most almost 80% of sprouts and saplings were within 

the tree height buffer polygon (Figure 2).  The results allowed me to reject my original 

hypothesis that tree height defines the zone of influence (ZOI) radius and that saplings would 

be found outside this zone.   
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Figure 3.  Percent of total eucalypt lignotuberous sprouts and saplings outside and within the 
buffers of adult eucalypt trees.  Buffer radii were equal to the tree heights and canopy radii of 
individual adults. Sprouts N=347, Saplings N = 77.  
 
 In order to more accurately answer where sprouts and saplings were in relation to 

adult trees, I decided to explore the additive theory of the zone of influence. Bassett and 

White (2000) explain that in areas where ZOIs overlap, the effect of the influence will be 

additive.  So, in areas with many overlapping ZOIs, regeneration growth will be reduced.  

Furthermore, because tree height did not correctly define the ZOI radius, I did a second 

additive analysis using the average ZOI radius of eucalypt trees in Tasmania as defined by Bi 

and Jurskis (1997): lnZ=1.21+0.65lnCR, where Z= ZOI radius and CR= canopy radius. I 

created a third buffer polygon layer with the buffer radius equal to Z, hereby referred to as the 

Bi & Jurskis buffer.  

  The additive analysis was executed using vector format. That is, my data remained in 

the form of polygons, lines, and points. I first added a field, influence value, to each buffer 

polygon. The result that few saplings were found within the canopy buffer (i.e. under the 

canopy) suggests that the canopy buffer has a stronger influence on recruits than the tree 

height buffer. Therefore, I assigned the influence value of 1 to the tree height and Bi & 

Jurskis buffers and a value of 2 to the canopy buffer.  Because the vector data format cannot 
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not add overlapping influence values within the same layer, I had to divide overlapping tree 

height, Bi & Jurskis, and canopy buffer polygons into separate layers. 

  I then unioned the separated buffer polygons with the separated tree height or Bi & 

Jurskis buffer polygons. I added a field, total influence, to the union polygons which was 

equal to the sum of the influence values of all the separated buffers. For example, if two tree 

height buffers (influence value =1) overlapped, the total influence of the overlapping area 

would equal 2 and would be a separate polygon.  

 I decided to separate the total influence values into five classes, herby referred to as 

influence levels. I thought using five influence levels would be detailed enough to describe 

the effects of overlap. Every site differed in the maximum influence value, requiring that the 

data be classified with different intervals. I chose to classify using “natural jenks”. With this 

classification, the computer looks for natural breaks in the data and groups influence levels 

with similar frequencies together.  

 After classifying the data, I then had to create five more layers for each additive 

analysis which only included the total influence polygons of each influence level.  With these 

five layers, I was able to select for sprouts and saplings that were contained by each influence 

level. Points not contained within any of the five layers were considered to be in a level of 

influence equal to zero.  Like the earlier buffer analysis, I did not count any points outside of 

the study boundary.  

 Finally, the number of individual sprouts and saplings within each influence level was 

corrected for area. To do so, I first had to clip each influence level layer by using the study 

boundary as the clipping feature. Not doing so would underestimate the densities of recruits 

because many parts of the tree height and Bi & Jurskis buffers were outside the study 

boundary. I then used the calculate geometry tool to find the area of each influence level 

layer. From each of these layers I subtracted the basal area contained there within, as basal 
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area represents an area where no other plant can exist (Berger, Hildenbrandt & Grimm 2002). 

I then divided the number of individuals by the area of the influence level layer to obtain the 

density of individuals within each influence level (individuals/m2).  

 The mean and standard error of the density of individuals within each influence level 

were calculated across all 12 sites. I employed an ANOVA to determine if a significant 

difference (P<0.05) existed between the density of individuals in each influence level. When 

a significant difference did exist, I used a student t-test to test which of the five influence 

level densities differed from one another. 

 Ideally, I would have performed the above additive analysis using raster format. 

Raster is grid based and each cell within a grid has a value corresponding to a designated 

attribute. In this analysis, the attribute would be equal to the influence value (1 or 2) of the 

tree height, canopy, or Bi & Jurskis buffers. Then, one could overlay the buffer grids and sum 

the influence values of overlapping cells. However, I did not have the proper licenses to run 

raster analyses. 

 I created maps of the tree height additive analysis in ArcMap. I classified the maps 

using stretched classification, in which every total influence value is distinguished from the 

others. By distinguishing total influence values, the maps are not affected by the 5 semi-

elusive classes of influence levels. 
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III. RESULTS 

A. Structure  

 1. Understorey:  

 a. Non-Eucalypt Species: There was not a significant difference in the estimated 

densities of any species of non-eucalypt saplings or trees between all three site types (P>0.05) 

(Figures 4 and 5). Banksia spp. was the dominant non-eucalypt sapling species in all three 

site types (Figure 4).  The dominant non-eucalypt tree species varied (Figure 5).  

 

 

 

 

 

 
Figure 4.  Estimates of mean densities (individuals/site, +SE) of non-eucalypt saplings in the 
three site types. Densities were corrected for area using a standardized circular site with a 20 
m radius. N= 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Estimates of mean densities (individuals/site, +SE) of non-eucalypt trees in the 
three site types. Densities were corrected for area using a standardized circular site with a 20 
m radius. N=4.  
 
 
 b. Eucalypt Species: There was no significant difference in the densities of 

lignotuberous sprouts in either species between sites (P>0.05) (Figures 6 and 7). The sap. 
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sites had significantly greater densities of saplings compared to both other site types (P<0.01) 

(Figures 6 and 7). E. amygdalina sprouts were the dominant life history stage and species 

within all sites (Figure 6). However, when only considering E. viminalis, there was more 

saplings than sprouts in the seed. and sap. sites (Figure 7).   When comparing the two species, 

there were significantly less E. viminalis lignotuberous sprouts and saplings than those of E. 

amygdalina (P<0.05). (Figures 6 and 7). Furthermore, there were no E. viminalis seedlings in 

any site.   

 
 
 
 
 
 
 
 
Figure 6: Mean densities (individuals/site, +SE) of E. amygdalina life history stages in the 
three site types. Densities were corrected for area using a standardized circular site with a 20 
m radius. N=4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Mean densities (individuals/site, +SE) of E. viminalis life history stages in the three 
site types. Densities were corrected for area using a standardized circular site with a 20 m 
radius. N=4.  
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 2. Overstorey:  There was no significant difference in the mean density of adult trees 

and the mean % basal area in the three site types (Table 1). The mean % canopy cover in the 

sap. sites was significantly less than in n.sites and seed. sites (P<0.05) (Table 1) However, the 

differences in mean canopy cover between n. sites and seed. sites were statistically 

insignificant (Table 1). There was also no significant difference in the mean tree height, 

expressed in vertical m/m2, when comparing all three sites (P=0.11) (Table 1). Across all 

twelve sites, the average ratio of E. amygdalina to E. viminalis adult tree was equal to 21:1.  

Table 1. Adult tree structural attributes: Mean density, % basal area, % canopy cover, and 
tree height (+SE) in each site type. N=4.   
Site Type Mean Density 

(trees/m2) 
Mean % Basal Area Mean % 

Canopy Cover  
Mean Tree Height 
(vertical m/m2)

N.  0.0193 (0.0022) 0.381 (5.0E-4) 60.7 (6.5) 0.169 (3.1E-4) 
Seed. 0.0236 (0.0056) 0.356 (1.5E-4) 61.6 (5.1) 0.200 (3.6E-4) 
Sap.  0.0150 (0.0010) 0.304 (6.2E-4) 43.9 (5.9) 0.124 (1.7E-4) 
 
 
B. Spatial Analysis 
 
  1. Spatial Distribution: With the exception of seedlings, the spatial distribution 

between all life-historey stages varied from site to site. The majority of sites had clustered 

lignotuberous sprouts (Table 2). With only one lignotuberous sprout, site N2 could not be 

analyzed. Saplings in all but 1 site were randomly distributed (Table 2). Half of the sites had 

adult trees that were regularly distributed (Table 2).  Of the 6 sites with randomly distributed 

adult trees, 2 showed a strong trend towards being regularly distributed (P<0.1) There were 

not enough seedlings in any site to run a nearest neighbor analysis. 

Table 2.  Frequency counts of spatial distribution patterns in Eucalyptus spp. life history 
stages. Departure from a random distribution was considered significant when P≤0.05. 
Frequencies were taken from across all study sites containing each life history form.   
 
Life history Stage Clustered Random Regular  
Sprouts 7 4 0 
Saplings 1 6 0 
Adult Trees 0 6 6 
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 2. Zone of Influence:  In both the tree height and Bi & Jurskis analyses, sprouts had 

the highest densities outside of all zones of influence (level of influence =0) (Figure 8). The 

densities of sprouts decreased as the level of influence increased (Figure 8). ANOVA tests 

indicated that there was a strong significant difference in the mean densities of sprouts over 

all influence levels for both analysis types (P<0.01). However, T-tests for both analyses 

revealed that there was no statistically significant difference between densities of sprouts in 

levels of influence 0 and 1 and between densities in levels of influence 2 through 5 (P>0.05).  

 

 

 

 

 

 

 

 
 
Figure 8. Mean densities (individuals/m2

) of lignotuberous sprouts within each influence 
level. Results of two analyses are shown: 1. Zone of influence defined by tree height, 2. Zone 
of influence defined by a function of canopy radius, as described by Bi and Jurskis (1997). 
N=12. 
 
 In both analyses types, saplings were densest outside of all zones of influence 

(influence level = 0) (Figure 9). Densities of saplings decreased up to influence level 4, in the 

tree height analysis, and influence level 2, in the Bi & Jurskis analysis, before increasing 

again (Figure 9). The tree height analysis also exhibited a sudden increase in the density of 

saplings in influence level 5. In the Bi and Jurskis analysis, there were 0 saplings in influence 

level 5 (Figure 9). ANOVA tests indicated that, in the tree height analysis, there was no 

significant difference in the mean densities of saplings across all influence levels. T-test 

confirmed that differences in densities in level 0, 1, 2 and 5 were statistically indifferent. 
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However, these densities were significantly greater than sapling densities in levels of 

influence 3 and 4.  Oppositely, ANOVA tests indicated that, in the Bi & Jurskis analysis, 

there was a strong significant difference in the mean densities of saplings across all influence 

levels (P=0.017). However, similar to the sprouts, t-tests revealed that there was no 

statistically significant difference between densities of sprouts in levels of influence 0 and 1 

and between densities in levels of influence 2 through 5 (P>0.05). 
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Figure 9.  Mean densities (individuals/m2

) of saplings within each influence level. Results of 
two analyses are shown: 1. Zone of influence defined by tree height, 2. Zone of influence 
defined by a function of canopy radius, as described by Bi and Jurskis (1997) n=71. 
 
 The positions of recruits within tree height zones of influence are further clarified 

through examining figures 10, 11, and 12  (following pages). Areas that are darker have 

greater influence levels and contain fewer saplings and sprouts than areas which reflect lower 

influence levels. The figures also make it apparent that maximum total influences, which 

reflect number of overlaps, vary from site to site. The lowest maximum total influence is in 

Sap4 (Rd) while the highest maximum total influence is in N4 (Pd). The maps also illustrate 

the results of the analysis on overstorey structural attributes, especially mean tree height and 

densities. These maps will be further interpreted in the discussion.  
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Figure 10: Zone of influence (ZOI) spatial analysis maps for study sites N1 through N4. Total 
influence values are based a ZOI radius equal to tree height.  
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Figure 11: Zone of influence (ZOI) spatial analysis maps for study sites Seed1 through 
Seed4. Influence levels are based a ZOI radius equal to tree height.  
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Figure 12: Zone of influence (ZOI) spatial analysis maps for study sites Sap1 through Sap4. 
Total influence values are based a ZOI radius equal to tree height.  
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IV.  DISCUSSION 
 
A. Structure 
  
 1. Understorey:  

 a. Non -eucalypt: The results indicate that understorey species, both saplings and 

trees, do not have a statistically significant impact on recruit density (Figures 4 and 5). 

Therefore, I reject my hypothesis that a decrease in non-eucalypt understorey densities would 

correlate with an increase in successful recruit densities. This result, however, falsely implies 

that understorey species do not compete with or have a suppressive influence on eucalypts.  

Bowman & Kirkpatrick (1984) have found that interspecific competition for nutrient 

resources suppresses eucalypt species.  Furthermore, Withers (1979) found that understorey 

Casuarina shaded the shade-intolerant eucalypt seedlings and was correlated with increased 

seedling mortality.  Despite these negative influences, I speculate that the overstorey 

eucalypts had a larger influence on the recruits than the understorey non-eucalypts. Because 

these variables could not be separated in a field-based study, any influence that the 

understorey structure had on the sprouts was shadowed by that of the overstorey.  

 Interestingly, there was as positive correlation between the number of eucalypt 

saplings and the numbers of Acacia trees and Banksia trees and saplings. The greater 

presence of non-eucalypt individuals may be an indicator of an environment that is nutrient 

rich and suitable for eucalypt regeneration. The assumption that the presence of other tree 

species characterizes nutrient-rich patches was also made by Barot, Gignoux and Menaut 

(1999).  

 In addition to nutrient availability, the relative differences in the densities of species 

may be an indicator overstorey light penetration. Of the three non-eucalypt species 

composing the understorey, Acacia is the most shade tolerant (Withers 1979). Banksia, on the 

other hand, is more sun-loving (Withers 1979). The density of Bankisa saplings was much 
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greater than that of Acacia in the sap. sites than the n. or seed. sites, suggesting more light is 

available in the sap. sites. This conclusion is further supported by the fact that the sap. sites 

supported the lowest densities Acacaia saplings, which are the most shade tolerant. 

 b. Eucalypt species:  The result that most saplings were found in sap. site, and not 

seed. sites shows that seed. sites were less likely to yield saplings. Any sites with both 

saplings and seedlings were characterized as “seed.” sites. Therefore, seed. sites could have 

potentially had an equal or greater amount of sapling than the “sap.” sites.  However, because 

this condition did not exist, the sites which contain seedling microsites probably are not the 

most conducive to sapling growth. This suggestion will be explored throughout the 

discussion.  

Increased sapling density did not correlate positively with a significant increase in 

lignotuberous sprout density. Rather, any differences in the densitites of ligntuberous sprouts 

in each site were statistically insignificant. I therefore reject my hypothesis that densities of 

sprouts and saplings increase concurrently.  This result demonstrates that some of the factors 

that limit sapling growth may not limit lignotuberous sprout survival. While eucalypt trees 

and saplings compete for nutrients, small sprouts have adequate carbohydrates storage in 

their lignotubers. This storage enables the sprouts to grow vigorously when the overstorey is 

removed (Walters & Bell 2005).   Also, saplings may be more limited by nutrient and water 

distribution than lignotubers are.  This was evidenced in a manipulative experiment by 

Walters, House and Doley (2005) which found that water and nutrient availability do not 

affect the growth of eucalypt lignotubers in Queensland. This hypothesis on resource 

limitation is further supported by the result that the lignotuberous sprouts were the dominant 

life history stage in all three sites. However, Fensham and Bowman (1992) also found that 

there were many more sprouts compared to saplings in a tropical eucalypt forest, and 

attributed this difference to termite damage, rather than resource availability.  Their result 
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demonstrates that implications about resource availability based on my results have to be 

made with caution.  As will be discussed below, future studies should consider collecting 

information on nutrient levels in every site.  

 2. Overstorey: Percent canopy cover was the only adult structural attribute which was 

significantly different between sites. As was expected, there was less canopy cover in the 

sites which supported sapling growth. When summarizing research by others, Bassett and 

White (2000) described the common result that there is an absence of regeneration directly 

below the crown of the tree in eucalypt species. This result can be explained by the low shade 

tolerance of eucalypts, as discussed earlier (Withers 1979). With increased canopy coverage 

in the seed. and n. sites, there is less area for recruits to survive. Also, the width of the 

eucalypt crown is usually correlated with (but not equal to) the lateral growth of the root 

system (Vacek and Lepps 1996). So, the difference in percent canopy cover may also reflect 

belowground competition, with sap. sites having the least competition. The result that the 

seed. sites had a significantly greater percent canopy coverage suggests that there may not be 

enough light penetration and too much underground competition for successful eucalypt 

recruitment.  

 Surprisingly, there was not a significant difference in the mean basal areas, densities, 

or total tree heights of adult trees in the three site types. Bassett and White (2000), studying 

eucalypts in Victoria, Vivian et. al (2008) studying E. delagantesis,  and Hawkins (2005), 

studying E. amygdalina, found that a decrease in basal area correlated with an increase in 

regeneration. In these studies, basal area was decreased through tree removal, meaning that 

adult tree density was also reduced.  

I can offer two possible explanations of why my results were not consistent with the 

above studies.  First, the correlation between competitive influence and DBH is weaker for 

smaller trees than it is for larger trees. (Soares and Tome 1999) Therefore, the competitive 
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influence of adult trees in sites with many small trees, such a Seed4 (figure 11d) is 

underestimated. Secondly, clumping reduces the influence adults have on understorey species 

because more area is free of competition (Basset and White 2000). The clumping of trees, 

even if not statistically significant, was not taken into account when analyzing the overstorey 

attributes. Therefore, tree density, basal area, and tree height may still be important factors 

which limit regeneration of eucalypts.  

B. Spatial Analysis  

 1. Spatial distribution: Although the spatial distribution of life history stages varied, 

the results do show a trend that eucalypts become more regularly distributed as they grow. 

This result is consistent with my hypothesis. Although ArcGIS could not run analyses on 

seedlings, from visual inspection of the seed site maps (Figure 11), seedlings appear to be 

clustered. Hardner, Potts, and Gore (1998) related the clustering of seedlings to the method of 

seed dispersal. They found that in eucalypt trees, seeds were mainly distributed by the wind 

and gravity, which caused a clumped distribution.  A better explanation can be offered by 

looking at where the seedlings are clustered. In most instances, clusters were found in the 

typical ashbed germination microsite (Bailey, Davidson & Close 2008).  However, Seed3 

showed a departure from this pattern, where seedlings were unexpectedly located near 

mounds in the northwest corner of the site (Figure 11c). I suspect that the mounds offer the 

same protection from climatic extremes and decrease in evaporation that can be found in the 

ashbed (Bailey, Davidson & Close 2008). Therefore, the distribution of the seedlings keeps 

with Close and Davidson’s description (2001) of seedling not being “wheat field-like”.  

Rather, they will be concentrated in areas which can support germination.  

 More lignotuberous sprouts were found to be clustered than I expected. A clustered 

pattern suggests that there is a lack in density dependent mortality brought about by 

competition (Myster and Pickett 1992). While the results do not agree with my hypothesis 
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that lignotuberous sprouts are randomly distributed, they do reinforce a point made earlier: 

that lignotuberous sprouts are not as limited by nutrient or water availability as saplings are. 

Although they have extensive root systems (Walters and Bell 2005), there is probably not yet 

enough competition to thin the clumps. With an opening of canopy, sprouts are expected to 

grow vigorously into saplings (Walters and Bell 2005), at which point self thinning will 

occur.  

 Most saplings were randomly distributed, which supports my hypothesis. It should be 

noted that describing a spatial distribution as random does not mean that the process of 

generating the random distribution is, of itself, random (Perry et al.  2006) Rather, the result 

that saplings are randomly distributed possibly shows that there is increased competition and 

a move towards been regularly distributed.  

 Half of the adults were shown to be regularly distributed, another fourth showing a 

strong trend towards being distributed. Again, this supports my hypothesis. Adults have been 

shown to increase in regularity due to increased competition and defoliation, leading to the 

mortality of weaker competitors (Vacek and Lepps 1996).   

 
 2. Zone of Influence.  The zone of influence (ZOI) analyses helped to confirm the 

above findings that intraspecific competition is important in determining the spatial 

patterning of eucalypts. In an improvement to other ZOI models, the additive analyses shows 

that as overlapping of zones of influence increase, the density of saplings and lignotuberous 

sprouts in these areas decreases. The objective of this study was not to analyze which 

analysis, the tree height buffer or Bi & Jurskis buffer, is more appropriate for eucalypts. 

Clearly, in contrast to my hypothesis, the zone of influence is not defined by tree height, 

because most individuals were located within tree height of at least one adult tree. However, 

my results show the two models act to reinforce each other. Therefore, I conclude that the 
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number of overlaps (reflected in the level of influence), rather than the size of zone of 

influence, is important in determining where recruits will be located in relation to adult trees.  

 Lignotuberous sprouts were largely limited to levels of influence 0 and 1, and were 

just as likely to be in either of these zones. Although not statistically significant, my results 

show that there is a j curve decrease in the density of sprouts from influence levels 0 to 5. 

This finding is similar to findings of Hawkins (2005) who found that the number of seedlings 

decreased markedly closer to the trunk of adult trees. However, it should be noted that while 

Hawkins defined ‘influence levels’ by distance to the main stem, this study defined the 

influence level by describing the number of ZOI overlaps, which is not always related to the 

distance to the main stem. The low levels of influence may reflect less aboveground 

competition for light (Stage and Ledermann 2008) and belowground competition for water 

and nutrients (Casper and Jackson 1997).  

 The location of saplings in relation to levels of influence was more variable than the 

location of sprouts.  The tree height analysis showed that saplings were as just likely to be in 

influence levels 0, 1, 2, or 5, but less likely to be in influence levels 3 or 4. This result slightly 

contrasts with the Bi and Jurskis analysis, where saplings were less likely to be in influence 2 

through 5. Furthermore, both models showed that densities of saplings first decreased and 

then increased as the influence level increased.  

 The variation in sapling location may be due to several counterbalancing factors 

which determine spatial distribution. Because seeds are dependent on wind and gravity for 

distribution, the number of seedlings can decrease exponentially with distance from a parent 

tree (Myster and Pickett 1992).  The opening of forest structure with fire allows wind to 

distribute seeds farther, but seeds are still more likely to be close to an adult. Casper, Schenk, 

and Jackson (2003) also found that ZOIs overlap in nutrient rich patches. So, while 

competition may be higher in these patches, it may be advantageous for saplings to become 
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established there.  As a final positive consequence, being within the zone of influence may 

protect seedlings from grass reinvasion (Hawkins 2005) which can suppress seedling growth 

(Wardle 1970).  These factors which result in saplings growing close to an adult tree are 

counterbalanced by negative consequences of increased competition for water and nutrients 

(as described above), shading (Canham, Lepage, & Coates 2004) and allelopathy.  

Allelopathic chemicals, which can suppress understorey vegetation, are in higher 

concentrations closer to adult trees (May & Ash 1990). Allelopathy is a particularly relevant 

issue in drier climates, such as the midlands, because the leaf litter, containing the 

suppressive chemicals, is not decayed quickly (May and Ash 1990). As shown, there are 

many underlying and conflicting factors which structure may be reflective of and which 

ultimately determine where saplings are located within the forest.  Interesting predictions can 

be made regarding the fate of the seedlings within the study sites of Tom Gibson Reserve. 

The results of the additive ZOI analyses suggest that the places best suited for seedling 

germination are not the ideal places for successful recruitment. The seedlings, found within 

the seed. sites, are likely to suffer from a lack of light availability and intense competition 

from multiple adult trees. These conditions can explain why seed. sites also had few 

successful recruits. I predict that the most successful seedlings will be those in Seed2. The 

spatial analysis map of Seed2 (Figure 11b) shows that there is less overlapping ZOIs and a 

greater area with a level of influence equal to zero. In fact, Seed2 map closely resembles the 

sites of Sap1-Sap4, which were able to support the greatest densities of saplings.   

 

C. Other factors to consider 

 1. Browsing: Browsing has been shown to have an extensive influence on 

regeneration success (Hawkins 2005). In my field observations, many sites had burrows and 

holes, which are signs of animal activity. Interestingly, while I observed these burrows in the  
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n. sites and seed. sites, they were not obvious features of sap. sites. If the fauna browse close 

to these burrows, then browsing may explain why there were fewer successful recruits in the 

n. sites and seed. sites. The result that there was few E. viminalis saplings and no seedlings 

may also be attributed to browsing pressure. Brushtail possums, pademelons, and rabbits 

have been show to prefer E. viminalis over E. amygdalina (Hawkins 2005).  

 
 2. Anthropogenic disturbance:  In some study sites, such as S3 and N2, signs of past 

human disturbance, in the forms of mounds, were evident. As I saw, the mounds supported 

the growth of saplings and seedlings. Disturbance probably upturned soil so that these 

mounds were more nutrient rich than the surrounding area. Close and Davidson (2002) 

explain that mounding also reduces moisture loss, which is a limiting resource in eucalypts. 

The presence of human disturbance could have skewed my results, resulting in greater 

densities of recruits than what would occur in a natural, undisturbed area.  

  
 3. Microtopography: Topography can affect drainage, moisture, and nutrient levels 

throughout a landscape (Enoki and Abe 2004).  Nutrient levels are also impacted by nutrient 

levels, with soil on sunny aspects less leached of nutrients than soils on shady (southern) 

aspects (McIntosh et al.  2005). Leaching is of particular concern in dry forest, in which 

rainfall, which replenished nutrients losses, is limited (McIntosh et al.  2005). While I did not 

use topographic data in this analysis, total station does record minute changes in elevation. 

Therefore, the data can be used to discriminate if microtopography should be considered 

when establishing a microsite in a degraded remnant forest.   
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VI. CONCLUSION 

A. Summary of Results:  

 This study has attempted to start characterizing the baseline demography of a recently 

burnt remnant forest. The baseline can be used to assess the health of degraded patches and 

determine their potential in supporting eucalypt recruits.  

 
 1. Characterize the stand structure where recruits are successful: I have found that 

relative to understorey structure, overstorey structure is more important in determining the 

distribution of successful recruits. Successful recruits were located in gaps which had less 

canopy coverage. Canopy coverage may be reflective of light availability and underground 

competition for moisture and light. Tree height, percent basal area, and adult tree density did 

not significantly correlate with the density of successful recruits but further spatial analysis 

indicated that, when integrated, these attributes are important in determining the location of 

recruits.  

 
 2. Describe where the recruits are within this structure: The spatial distribution of 

Eucalypts spp. indicates that the area of competition for resources increases as seedlings 

assess to adults. My results suggest that the competitive influence exerted by multiple adults 

has a suppressive effect on recruits. Sprouts are most likely to be found in areas of lower 

influence levels, in which less neighboring trees are competing for resources. The location of 

saplings relative to adults was more variable than that of lignotuberous sprouts, suggesting 

that factors other than resource competition are also important in determining successful 

recruitment.  

 
B. Management implications  

 1. The ideal placement of a microsite: The study has shown that it is important to 

consider where germination microsites are manually established in order to better guarantee 
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successful recruitment. In interest of simplicity, I would suggest that the microsite be placed 

within the following three constraints: 1.In an area where canopy coverage is <50%. 2. 

Outside the area of any adult canopy. 3. Away from tall neighboring trees with large 

canopies.  My results also show that it is not necessarily wise to choose a location which has 

a lack of understorey species in the interest of reducing competition with a recruit. In fact, a 

presence of non-eucalypt understorey species may be an indicator of resource availability.  

 
 2. The role of fire: Although the entire study area had undergone a controlled burn 5 

years ago, my results show that fire does not affect a landscape in a uniform manner. My 

three study site types exemplify the mosaic of conditions in the forest, where some gaps have 

very little if any successful recruits, while other gaps support a greater amount of 

regeneration. Interestingly, while it can be assumed that the seed. sites were the locations of 

the most severe fire, as is evidenced by an ashbed, they were not the sites which supported 

the most lignotuberous sprouts, which can regenerate quickly after a fire. Instead, the sap. 

sites had greater densities of saplings and lignotuberous sprouts. In this study, fire was shown 

to offer the benefits of increased seed dispersal and the creation of a suitable germination 

microsite. These benefits may be replicable without the use of fire. For example, hand sowing 

seedlings near appropriately placed protective mounds may produce successful regeneration. 

This is not to suggest that the use of fire as a management tool should be neglected, but that 

other methods may be used alongside fire to guarantee the best rehabilitation of degraded dry 

eucalypt remnants.  

 
C. Lessons from the pilot study 

 I recognize that many variables related to demography were explored in this study. 

There are several changes I would make to future demographic studies to ensure that they are 

more effective and reasonable to apply on a larger scale.  
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 1. Understorey: While non-eucalypt understorey structure may affect regeneration, it 

has been shown to be secondary to the effects of overstorey structure.  Given that collecting 

this data took a huge amount of additional time and effort, I recommend that non-eucalypt 

understorey structure is taken note of but not be included in spatial data collection.  

 
 2. Simplifications: 

 a. Canopy:  There is no doubt that the accuracy of the ZOI additive analysis could be 

improved by a more realistic representation of crown shape. However, this method is likely to 

add significant burden in the field without a significant gain in predictions of where recruits 

are located. If more accurate data on canopy coverage is required, I recommend using 

satellite imagery.  

 b. ZOI: While I think a more accurate way of defining the ZOI radius would be 

useful, it is not as important as more accurately delineating the amount of influence within 

the ZOI.  Berger, Hildenbrandt & Grimm (2002) have shown that the amount of influence 

that a tree exerts decreases exponentially from the stem. In the pilot study, I started to show 

this decrease with a graduated system where the influence value of the canopy buffer equaled 

2 and the tree height buffer equaled 1. However, tools in GIS, such as the multiple ring buffer 

or raster analysis, can be easily implemented to better represent the exponential decrease in 

influence.   

 
 2. Study area: In this study I chose to survey 12 separate sites. Doing so allowed me 

to characterize and compare three site types in an efficient manner. However, there were 

several drawbacks. First, many individuals had to be excluded from spatial analysis because 

they did not have enough spatial context to accurately describe their position within the 

forest. Secondly, smaller study sites also limited the number of individuals within each site to 

a level in which Ripley’s K analysis, a more effective way to analyze spatial distributions , 
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could not be executed (Perry et al. 2006).  I recommend that 2 or 3 larger study areas be 

chosen and analyzed using spatial analyses tools in ArcGIS or a similar program.  

 
D. Future Research 

 Our understanding of eucalypt regeneration may benefit from studying how potential 

recruits are impacted by browsing, underground competition, and moisture and nutrient 

resource availability. Browsing may impact sprout and sapling success, with the fewest 

successful recruits found in areas which evidenced the presence of several browsing species. 

Underground competition also needs to be considered and related to above ground overstorey 

attributes in a dry eucalypt forest. Then, a more appropriate ZOI can then be developed which 

will help pinpoint areas that will be favorable to eucalypt regeneration. Finally, studying 

moisture and nutrient availability is important in understanding the underlying causes of 

spatial distribution. It would be interesting to know if areas with the greatest resource 

availability support more successful saplings, or if competition from adults outweighs the 

benefits of growing in these areas.  
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