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Abstract 
 
Ultraviolet radiation has far-reaching effects in marine ecosystems, but many marine 

organisms have UV-absorbing compounds that protect them from sun-induced 

damage. The mucus of coral reef fish has been found to contain mycosporine-like 

amino acids that absorb UV light from 309-360 nm. Using UV spectrophotometry, we 

examined whether fish are able to allocate these MAA sunscreen compounds to areas 

of the body that receive the most UV radiation. We compared absorbance spectra of 

mucus from the body surface of dorsal, ventral, caudal and head areas in two species 

of Scaridae (Scarus schlegeli and Chlorurus sordidus) from Coral Bay, Western 

Australia. All fish analyzed showed signs of MAAs, and results suggested that fish 

can increase UV absorbance in mucus over the dorsal area, which receives the brunt 

of UV radiation. Less radiation was found in mucus from the ventral area, which 

receives the least radiation. We also analyzed integrated absorbance and standard 

length and found a relationship in C. sordidus. Significance was not found between 

standard length and integrated absorbance, indicating the need for further study. 

Overall, results suggest that fish are highly responsive to UV levels in relation to 

mucus secretion and that MAAs may be ecologically expensive to acquire and utilize.   
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1. Introduction 

Ultraviolet radiation is an important factor affecting both terrestrial and 

marine ecosystems (Mason 1998, Jokiel 1980). UV radiation damages DNA, lowers 

growth rates, releases harmful reactive oxygen species, and can cause cell apoptosis 

in many different types of marine organisms from phytoplankton to teleost fish 

(Häder et. al 2005). Coral reef systems are particularly susceptible to damage from 

UV radiation as they are found at lower latitudes where solar radiation levels are high, 

water is oligotrophic and the atmosphere is thinner (Dunlap et. al 1998). During the 

summer months on the Great Barrier Reef, corals in shallow water can experience 30 

times the minimum dosage of UV radiation capable of causing sunburn in humans 

each day (Dunlap et. al 2000). All organisms on the reef must in some way protect 

themselves from the high levels of UV radiation to avoid the detrimental results of 

prolonged exposure. For fish in particular, sunburning can be of fatal consequence, so 

protection is of the utmost importance (Zamzow 2003).  

There are four major ways that organisms on the reef avoid UV damage. 

These strategies include chemical defenses like sequestering UV-absorbing 

compounds to prevent damage, DNA repair mechanisms to fix the damage that has 

been done, avoidance behaviors such as seeking shelter or migrating to deeper water 

for motile organisms, and also gaining protective morphological features such as 

scales that block some UVR (Dunlap et. al 1998, Eckes in press).  

 Most studies on chemical defenses like the production and sequestration of 

UV-absorbing compounds have been conducted on corals (Dunlap et. al 1998, Shick 

et. al 1996, Häder et. al 2005). Relatively little is known about what vertebrate fish on 

the reef do for protection, but a study by Zamzow and Losey (2002) showed that 90% 
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of 137 reef fish species surveyed had chemical compounds that absorbed UV light in 

their epithelial mucus (2002). These UV-absorbing compounds are primarily made up 

of a group of structurally similar molecules called mycosporine-like amino acids 

(MAAs) that absorb light in the 309-360 nm range, which includes much of the UVB 

and UVA spectra (Dunlap et. al 1998).  

Whether or not fish have the ability to allocate these UV-absorbing 

compounds in mucus to different surfaces on the body is unknown. Fish likely 

sequester MAAs from their diet as metazoans are unable to synthesize them (Dunlap 

et. al 1998). Once the UV-absorbing compounds are taken in, sunscreens are 

processed, possibly converted to structurally different MAAs, and then excreted into 

the epithelial mucus as a protective method from ultraviolet radiation (Dunlap and 

Shick 2000).  

Depending on the optical clarity of the water, UV radiation can penetrate the 

water column down to several hundred meters (Tedetti et. al 2007).  As UV light 

passes through the water it is attenuated and eventually it is completely absorbed by 

particles and dissolved organic carbon in the water (Bancroft et. al 2007). UV 

radiation on the reef changes on hourly scales based on cloud cover and turbidity of 

the water (Jokiel et. al 1996), though the ability of fish to respond to changes in UV is 

on longer time scales on the order of days and weeks (Zamzow 2004).  

Regardless differences in total UV attenuation in the water, specific areas of 

the fish receive more UV radiation than others (Eckes, unpubl). The dorsal surface 

and pectoral fins of the fish tend to receive the brunt of the UV-radiation, while the 

underside likely receives less, although reflection off of the bottom influence the 

underside (Eckes, unpublished). It has already been shown that the levels of 

absorbance in mucus are responsive to the overall amount of UV-radiation in the 



 

 3 
 

environment overall, indicating a level of control with the secretion of MAAs in 

mucus (Zamzow and Losey 2002). 

 For this study we used parrotfish (Scaridae) to determine whether they have 

the ability to selectively secrete MAA sunscreens into their mucus according to UV 

exposure levels on the reef. Parrotfish are unusual because they have two kinds of 

mucus glands each sequestering a different mucus type; the nighttime mucus cocoon 

and the mucus constantly excreted during the day. It has been shown that the mucus 

that makes up the cocoon at night does not contain MAAs (Zamzow and Losey 2002). 

As the cocoon is secreted at night in the absence of UV, the difference in MAA 

concentration of the two kinds of mucus glands is a response to the UV light level, 

suggesting some control of MAA secretion on the part of the fish. Such results could 

mean that parrotfish can also differentially distribute MAAs across the body surface.  

1.1 Purpose and Research Objectives 

The purpose of this study was to examine the distribution of UV-blocking 

compounds in mucus on the surface of fishes from the family Scaridae. Research aims 

stemming from the purpose were as follows:  

1. Determine if mucus from different regions of the fish that receive the highest 

amounts of ultraviolet radiation have higher UV absorbance (and thus more 

MAAs) than mucus from areas that receive less radiation. Analyze four areas 

of the fish (dorsal surface, ventral surface, area from caudal peduncle through 

caudal fin and head area) evaluate the UV absorbance of mucus.  

2. Assess whether the size of the fish (standard length) influences integrated 

absorbance of ultraviolet radiation.  

3. Determine possible differences in the mucus make-up (profile) between two 

species of Scaridae through UV spectral analysis 
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4. Use UV absorbance spectral peak analysis to determine MAA presence in 

mucus of parrotfish from Coral Bay in Western Australia.  

These aims fell under the PhD research being conducted by Maxi Eckes on MAAs 

and coral reef fish from Australia. The primary aim of determining the distribution of 

MAAs across the fish body surface was an aim in Eckes’ PhD proposal. Other aims of 

Maxi’s project were examined over the course of the ISP informally.  

1.2 Background 

1.2.1 Ultraviolet radiation and its effects 

 Ultraviolet radiation is light in the non-visible area of the spectrum that is of 

shorter wavelength and higher energy; it ranges roughly from 150 nm to 400 nm 

(Sparling 2001). Most of the highest energy UV radiation (UVC radiation at 

wavelengths less than 280 nm) is absorbed by ozone and stratospheric oxygen 

(Sparling 2001). UVB radiation comprised of wavelengths from 280-320 nm and 

UVA radiation made up of wavelengths from 320-400 nm are the two significant 

causes of damage in organisms. UVB is particularly harmful to organisms because its 

absorption by DNA creates cyclobutane pyrimidine dimers, which do damage to other 

DNA, lipids and proteins within the body (Häder et. al 2005). It is a common cause of 

skin cancer in terrestrial mammals (Mason et. al 1998). In marine biota, UVB has 

large-scale ecological effects like decreasing the overall biomass productivity because 

it decreases productivity, reproduction, development, and increases the mutation rate 

in individual organisms (Häder et. al 2003).  

The amount of UV radiation received by organisms depends on elevation, 

latitude, cloud cover, and for aquatic organisms, the optical qualities of the water 

column (Sparling 2001, Zamzow 2007). UVR levels are also significant in areas like 
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the Antarctic where the ozone hole allows for increased UV penetration.  As 

anthropogenic inputs to our atmosphere increase and the ozone hole continues to get 

larger because of the lag time of inputs like CFCs, organisms will have to deal with 

elevated levels of UV radiation, and it is unknown whether many organisms will be 

able to adapt quickly enough for survival. 

1.2.2 Mycosporine-like amino acids (MAAs)  

 MAAs are UV-absorbing compounds, but unlike pigments like melanin, 

MAAs are translucent. The primary structural component of MAAs is a 

cyclohexenone or cyclohexenimine chromophore with a conjugated nitrogen 

substituent from an amino acid, amino alcohol or an amino group (Carreto et. al. 

2005). The compound works as a UV-protectant for organisms by absorbing 

incoming UV radiation and dissipating it as heat (Mason et. al 1998). MAAs also 

have antioxidant properties that help repair damage (Dunlap et. al 2002). There are 

now 26 primary structural MAAs that have been classified, and they have a range of 

absorption maxima from 290 nm to 360 nm. The first MAA was discovered by 

Shinbata in 1969, who observed a water-soluble compound in corals that had a broad 

absorption maximum at 320nm and called it “S-320” (Dunlap et. al 1998). Since that 

time, many MAAs have been found in a diverse range of marine taxa and are 

considered to be ubiquitous (Dunlap et. al 2002).  

Though recent studies show MAAs to be highly important for many marine 

organisms (Zamzow 2003), the response of organisms to UV radiation and utilization 

of MAAs varies greatly. In fishes, MAAs are found in the mucus, which gets 

continuously excreted over the body surface (Zamzow and Losey 2002). Because 

there is a relationship between water depth and UV penetration, fish and other 

organisms residing in deeper waters receive less UV-radiation than those living closer 



 

 6 
 

to the surface. It has been found that organisms living in deeper water are less tolerant 

to UV radiation (Shick et. al 1996) and have fewer MAAs in their mucus (Zamzow 

2003).  Some fish can also respond to changes in UV-radiation by adjusting levels of 

MAAs in their mucus over short time scales so long as MAAs are available in their 

diet (Zamzow 2004). The primary producers of MAAs must be photosynthetic 

organisms that use the light induced Shikimate pathway (Dunlap et. al 2000). On reef 

ecosystems, zooxanthellae are believed to produce MAAs and transfer them to coral 

hosts (Shick et. al 1996). Parrotfish feed on coral and cleaner wrasse “cheat” and feed 

on parrotfish mucus, indicating trophic MAA transfer (Grutter and Bshary 2004).  

2. Methodology 

2.1 Data Collection  

Mucus samples were collected by Maxi Eckes on Ningaloo reef at the Coral 

Bay Marine Research Station, Western Australia. The collection dates were from 

October 14 through October 22 2007. Fish were caught using barrier nets and kept in 

a bucket underwater until just prior to mucus removal. Mucus was removed no more 

than 10 minutes after fish were brought onto the boat in a holding bucket. Using a dull 

scalpel blade, mucus was gently taken from four different areas of the fish and frozen 

in liquid nitrogen at a temperature of -196°C soon after (Fig. 1). The first area, labeled 

A, was the area directly under the dorsal fin, the second area B was the ventral or 

underside surface, the third area C was the caudal fin and the caudal peduncle, and the 

fourth area D was the head (fig. 1). Fewer mucus samples from area D were taken 

because of the difficulty of getting sufficient enough mucus from the head of the fish. 

The size of the each fish was recorded (standard length and total length) in order to 

standardize quantities of mucus.  
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 The fish that were taken ranged in size from 8.7cm to 29.5cm. The fish that 

collected were of all different life phases and previous published work has shown that 

the UV absorbance of the mucus increases with increasing fish size (Zamzow et. al 

2006).  

Figure 1. Diagram of mucus sampling areas on fish. A is dorsal surface, B is ventral 
surface, C is caudal area, and D is head. Drawing courtesy of Maxi Eckes.  

 

In addition to collecting mucus samples, it was also necessary to determine the 

UV light that was penetrating the water column and reflecting off the sand and reef 

from the areas where the fish were caught. For this reason, UV transmission data was 

recorded using an underwater spectrophotometer (Ocean Optics 2000) from three 

different sites and subsurface directions on the reef. UV transmission was measured at 

a depth of 1.5m from different directions. Measurements of light were recorded 

directly from above (the surface), from several subsurface directions (at many angles 

underwater) and also from the bottom as reflectance off the sand and off different 

species of coral on the reef flat. Recordings were done on a cloudless day.   

A

B
CD 
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Figure 2. Removing mucus from a parrotfish using a dull scalpel. Photo courtesy of 
Maxi Eckes. 
 

2.1.1 Study species  
 

The two study species were Chlorurus sordidus, the Bullethead parrotfish, and 

Scarus schlegeli, the Yellowbar parrotfish. Parrotfish were used as the model species 

for this study because of the large volumes of mucus they produce that have easily 

detectible high MAA levels. Parrotfish (Scaridae) are some of the most distinctive 

fish on the reef because they have numerous sex change strategies, display many 

morphological differences based on sex and age, and are specialized to feed on corals 

(Bellwood et. al 1990). There are two different feeding strategies of Scaridae: some 

like S. schlegeli are scrapers, which eat only the live coral tissue and algae, and others 

like C. sordidus are excavators, which feed on the coral skeleton in addition to the 

living tissue (Steelman et. al 2002).  
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Figure 3. S. schlegeli on the left (photo by Dr. Andy Lewis). C. sordidus on the right 
(photo by J.E. Randall). 

 
The two species of parrotfish were ideal for this study because they have 

abundant mucus that allows for good swabbing across different areas of the fish 

(Eckes, pers. comm.). In addition, they are diurnal, meaning they are exposed to UV 

radiation during most of the day, and can occupy shallow habitats; these behaviors put 

them at direct risk for UVR damage. They feed on corals and algae, which are known 

to contain MAAs, so diet is not a likely limiting MAA factor.  

2.2 Mucus preparation  

2.2.1 Homogenization 

Because raw samples of mucus are very cohesive and can contain saltwater and 

other compounds, it is important to homogenize the mucus for consistency throughout 

the sample. This ensures that sample data will be characteristic of the whole sample 

and not of any heterogeneity within the sample. Samples were homogenized using the 

following method:  

1. 100% HPLC-grade methanol was added in two 500µL aliquots to each 

sample.  
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2. With the first addition of methanol, mucus was broken up as much as possible 

into the methanol. Mucus and methanol were then transferred to a tissue 

grinder or homogenizer.  

3. The remaining 500µL were used to remove any remaining sample from the 

walls or bottom of the tube. Contents of the tube were then transferred to the 

homogenizer.  

4. Sample was ground until homogenous in consistency. The liquid was then 

divided into two 1.5mL Eppendorf tubes with 500µL in each tube. One tube 

was for HPLC analysis and the other was for the UV spectral analysis.   

2.2.2 Drying and resuspension 

After samples were divided into two 1.5µL tubes, they were dried in a speed 

evaporation vacuum for several hours to remove excess methanol and saltwater. Once 

dry, samples needed to be resuspended for use with UV and HPLC analysis. Another 

500µL of methanol was added to the dry sample, and the sample was re-suspended 

primarily by the use of a sonicator and eppendorf grinding pestle.  

2.2.3 Sample weight measurement  
 

Due to time constraints it was not possible to do a High Performance Liquid 

Chromatography (HPLC) analysis that would show quantity and type of MAAs in 

mucus by looking at retention times of the sample as it is run through a column. In 

order to standardize the UV spectral data of each sample to get data on the relative 

concentrations of MAAs in our samples, dry weight measurements of the sample were 

recorded. Dry samples were measured by zeroing the scale using a test tube of the 

same type and make number, and then weighing the sample in its test tube.  
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2.2.4 UV spectra analysis 

Using spectrophotometry is an accepted method for measuring the absorbance of a 

sample over a set of wavelengths. For our samples, we were looking at the absorbance 

of mucus samples over UV wavelengths (280-400 nm). The resuspended aqueous 

samples were prepared for UV spectral testing in the following method:  

1. To make a starting dilution of 20%, 160 µL of 100% pure HPLC-grade 

methanol was added to 40µL of resuspended and mixed mucus samples for a 

total sample volume of 200µL. The samples were first done at a dilution of 

20% as an estimate to find the optimum scale for absorbance.  

2. Samples were vortexed then loaded in duplicate onto a standard 96-well plate 

in sets of 11 plus two blanks in order to minimize evaporation of samples in 

wells during loading. Total volume in each well was 200µL.  

3. A spectrum between 280-400 nm was recorded from each sample in 

increments of 2 nm. There was a temperature regulation of 23°C to minimize 

evaporation during the run. Samples were auto-mixed for 5 seconds prior to 

reading. All samples were run on a SpectraMax M2 spectrophotometer 

supplied by Molecular Devices.  

3. Results 

3.1 Distribution of MAAs over fish body surface 
 

After recording UV spectra for approximately 10 individual fish of each 

species and standardizing the absorbance using dry weight measurements, it appeared 

that there were visual differences in mucus UV absorbance graphs between the 

different body surfaces of the fish. Mucus from the dorsal surface of the fish—the 
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area receiving the highest UV radiation—consistently had the highest absorbency. 

The mucus from the caudal fin and peduncle of the fish had the second highest UV 

absorption. Mucus from the ventral area and from the head both had relatively low 

absorbencies for C. sordidus (fig. 4) and S. schlegeli (fig. 5). 

  

Because no HPLC analysis was done, the exact concentration of MAAs in the 

mucus samples is still unknown. Due to the relatively small dataset (around 10 fish of 

each species) the variation in the absorbance spectra was large, with high variation in 

UV absorbance between individual fish of the same species. No statistics were 

conducted on the dataset at this time, but large standard deviation suggest that further 

research would need to be conducted to quantify the relationship between MAAs in 

mucus of different body surfaces and the among of UV radiation they receive. 
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          Figure 4. Average UV absorption spectrum of C. sordidus. 
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3.2 Size of fish and UV absorbance of mucus 

Fish were categorized into four size classes based on standard length. These 

categories were 15-18cm, 18+ to 21cm, 21+ to 24cm and 24+ to 27cm. Data shows 

that for dorsal and ventral areas of C. sordidus, mucus absorbance changes with fish 

size (fig. 6). Results are not significant between any size classes but 15 to 18cm and 

24+ to 27cm, but this may be due to large the intraspecific variation between samples.  
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Figure 5. Average UV absorption spectrum of S. schlegeli. 
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Integrated absorbance (total area underneath the spectral curve) was used to 

represent the findings. As the size of the fish increases, the integrated absorbance 

increases as well, correlating well to the study done by Zamzow and Siebeck in 2006 

on damselfishes that found UV absorbance was related to fish size. For S. schlegeli, 

the relationship between size class and integrated absorbance was less consistent (fig. 

7).  For the size class 21+ to 24, the ventral surface has higher UV absorption than the 

dorsal surface, however this result could be related to small sample size for S. 

schlegeli in that size class. There was no apparent correlation for either species of fish 

between size and integrated absorbance of mucus from the caudal area and the head, 

and so the data from the caudal area and the head were not included in the data 

analysis. Though no statistical tests were run to show significance, error bars suggest 

that results are inconclusive, but a visual trend is still apparent in the data.  
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Figure 6. Average integrated absorbance of C. sordidus mucus from the dorsal (blue) 
and ventral (green) areas of the fish organized by fish size class. 
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Figure 7. Average integrated absorbance of S. schlegeli mucus from dorsal (blue) and 
ventral (green) areas. 

3.3 Species of fish and mucus absorbance  

Though different species are known to show different UV spectra and 

different combinations of MAAs, the data shows that the absorbance for both C. 

sordidus and S. schlegeli were similar (fig. 8). It is possible that different MAAs are 

present because the two species had spectra that varied slightly, with the S. schlegeli 

having a small peak slightly after 280nm and C. sordidus having a small peak nearer 

to 300nm. With just the UV-spectra analysis, it is not possible to show exactly what 

different MAAs could be present in the two species, but the spectra do show that 

absorbance is similar and thus the level of sun protection and concentration of MAAs 

is similar. Because it is believed that fish acquire MAAs from dietary sources and 

both species were caught on Ningaloo reef, the spectra could look very similar 
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because the fishes are utilizing the same food sources containing the same MAA 

compounds.  

 
 
 
 

3.4 Possible MAA compounds in study fish 

The primary MAA apparent in the S. schlegeli and C. sordidus from the UV 

spectral analysis is asterina-330, a common marine MAA (Dunlap et. al 1998). The 

peak absorption of asterina-330 is 330 nm, which is clearly a peak in the spectra of 

both fish species (fig. 8). There are several other MAAs that have maxima in the 320-

330 nm absorption range, including palythine, which has been found in other reef fish 

(Zamzow et. al 2006). Palythine may also be present in the samples of mucus from C. 

sordidus and S. schlegeli but is being combined with asterina-330 peak. Though we 

were unable to analyze the absorption maximum of the mucus from each species, it 

appears to peak near 326 nm, suggesting a combination of palythine and asterina-330 
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Figure 8. Average absorbance spectra of C. sordidus and S. schlegeli. Dotted line 
indicates S. schlegeli while solid line is C. sordidus. Peak around 330nm is likely 
asterina-330, a MAA. Peak around 290nm is likely a gadusol. 
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(Zamzow et. al 2006). Gadusols are compounds similar to MAAs that have a 

maximum absorbance below 300nm (Dunlap et. al 2002), and a peak around 294 nm 

thus indicating its presence in the two species of Scaridae.  

Another nearly ubiquitous MAA in marine ecosystems is mycosporine-

glycine, which has an absorption maxima (peak) at 310 nm (Dunlap and Shick 1998). 

Based on the UV spectra of the two fish, there is no peak at 310 nm, indicating a lack 

of mycosporine-glycine, but further HPLC analysis would be needed to definitely 

confirm the compound’s presence or absence. In addition, palythene (λmax=360nm) is 

a MAA that has been found in Scaridae from the east coast of Australia (Eckes in 

press). It did not appear to be present in any of the Scaridae sampled from Western 

Australia.  

3.6 Background UV results 
 

UV data taken at three sites on the reef indicate that by far the most harmful 

and powerful rays of UV radiation come from directly above, confirming that the 

dorsal surface is the most exposed surface in the fish. While there was some reflected 

UV from sand and reef subsurface, it was negligible. UV reflectance off of sand and 

coral surfaces were also similar, indicating that there is no great difference in UV 

received based on microhabitat for the two species of parrotfish, though microhabitat 

can be important overall (Bellwood et. al 1990).   

4.0 Discussion 

4.1 Distribution of MAAs across body surface 

Our research shows that fish may have the ability to not only differentially 

sequester MAAs (Zamzow and Losey 2002), but also differentially excrete MAAs on 



 

 18 
 

the body surface of parrotfish. As hypothesized, the dorsal area of the fish receives 

the greatest amount of UV radiation, and thus the dorsal mucus had the highest 

concentration of MAA compounds. The ventral area received less UV radiation as the 

reflection of UV from the sea floor was negligible, and less absorbance indicates 

fewer MAAs. The caudal fin probably receives a level of UVR in-between that of the 

dorsal and ventral surfaces, and has an intermediate absorbance. Overall, this suggests 

a relationship to the amount of UV light and the amount of MAAs. This relationship 

has already been well established in whole fish; a study by Zamzow and Losey found 

that the wrasse Thalassoma duperrey changed MAA levels in mucus based on both 

natural UV light changes and experimental UV changes (2002), but not over different 

body surfaces. 

The lowest concentration of MAAs was found in mucus covering the head of 

the fish. Mucus covering the head may lack many MAAs because important structures 

like the eyes already contain the compounds internally for protection (Mason 1998), 

and additional protection is less necessary. The head is also a relatively small area, 

and excluding the very top part of the head, it may receive intermediate amounts of 

radiation. In parrotfish, the glands that secrete mucus are located behind the head; it is 

believed that the opercular gland secretes the night mucus cocoon and the gill mucus 

gland secretes the daily mucus (Zamzow and Losey 2002, Rumney unpubl.). While 

the fish swims, the mucus is constantly secreted and distributed across the fish body 

surface. We hypothesize that the forward swimming motion of the fish makes it 

difficult to secrete a lot of mucus over the head. In addition, the small number of fish 

sampled for each area (and particularly for areas like the head), suggest that further 

research needs to be conducted to better detect the relationship between the mucus 

location and MAA concentration.  
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 The increased UV absorbance and MAA concentration on the dorsal surface 

of the fish and the decreased MAA concentration in mucus over the ventral area is 

visually different on graphs, which could indicate that MAAs are ecologically 

expensive to sequester. In holothuroids and other marine organisms MAAs are found 

primarily in epidermal cells or in gonads, indicating that the UV-absorbing 

compounds are located preferentially in areas that are most sensitive to radiation and 

damage (Dunlap et. al 1998). It is believed that MAAs are not limited in most marine 

environments (Zamzow 2004), so there must be another ecological pressure that 

causes differential secretion. The differential secretion of MAAs could arise from the 

water-soluble nature of MAAs, causing a constant need for replacement. Differential 

secretion could also stem from the fact that MAAs require a certain amount of 

processing before secretion (Dunlap et. al 1998).  

4.2 Size of fish and UV absorbance 
 

Because there is an established relationship between size and the amount of 

UV-absorbing compounds in fish we categorized the experimental data into size 

classes. For C. sordidus, size did affect the integrated absorbance with fish of larger 

size having a high UV absorbance in their mucus on the dorsal surface. Why this 

occurs is not clear, but it could relate to the fact that MAAs are dietary-acquired 

compounds, so the size of the fish may indicate some dietary behavior that allows for 

more MAA ingestion because of a larger food intake. Large fish could either be more 

efficient at processing MAAs or better at eating foods that are rich in MAAs 

(Zamzow and Siebeck 2006). The relationship between size and integrated UV 

absorbance of fish mucus remains dubious because conflicting results have shown the 

correlation to be true in some fish species (Zamzow 2004) and not in others (Zamzow 

and Siebeck 2006). The data represented here for S. schlegeli did not have this 
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positive relationship between size and absorbance for the 21+ to 24 size class 

however for all the other size classes the relationship was positive for this species. 

Again, the variation was large, and no significance was found, but further data had yet 

to be analyzed in the experiment, increasing sample size.  

4.3 Species of fish and MAA absorbance 
 

Overall, the absorption spectra of C. sordidus and S. schlegeli suggest that the 

fish have similar concentrations of MAAs and similar combinations of MAAs that 

provide broad UV spectrum protection. Both species of fishes showed a differential 

secretion of MAAs across the body surface, which indicates that fish protect 

themselves more in areas that receive increased radiation exposure. The similarity in 

absorption spectra could result from a similar dietary regime; however because C. 

sordidus is an excavator and S. schlegeli is a scraper there must be some fundamental 

differences in diet. In addition, differences in microhabitats of the fish could cause 

absorbance differences because it has been shown that excavators and scrapers have 

different behaviors and feeding specificity (Bellwood et. al 1990). Any potential 

differences would best be resolved using HPLC analysis and a greater analysis of 

species.  

4.4 Potential MAAs present 
 

Though UV analysis is not the ideal method of determining MAAs, UV 

spectra showed the definite presence of asterina-330 and the possible presence of 

palythine. Gadusols, which are believed to be the evolutionary precursors of MAAs 

(Shick 2002) were also present. Fish often use a combination of MAAs in order to get 

a broad-spectrum range of protection (Jokiel 1980), and this appears to be the case in 

our study fish mucus as well. HPLC analysis will further elucidate MAAs present.  
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5.0 Conclusion  
 

5.1 investigation of study aims 
 
With regards to the primary study aim of determining the distribution of MAAs across 

the body surface of Scaridae, our data suggests that there is differential secretion of 

mucus based on UV radiation exposure, but that further research is needed. The data 

correlates with size class between two size classes of C. sordidus, but was not a factor 

in S. schlegeli. The difference in UB spectral absorbance between the two species was 

minimal, but HPLC analysis could determine farther differences. The only two UV-

absorbing compounds that were definitively found in the mucus of both species were 

asterina-330 and a gadusol with a peak absorbance of 294 nm.  

5.2 Future research 

 Beyond the research being done to see if there is a possible way to adapt 

mycosporine-like amino acids to be suitable for human use (Dunlap et. al 2000), there 

remains a great gap of knowledge on MAA compounds, particularly in fish. The 

relationship between marine biota and UV radiation deserves more intensive study.  

More research should be done on the distribution of MAAs across the body surface 

and whether fish can mediate what MAAs occur in mucus over different areas. 

Another exciting area of research is assessing the movement of MAAs in the 

ecosystems, particularly in Scaridae and the cleaner wrasses that sometimes “cheat” 

and consume the Scarid mucus (Grutter et. al 2003). Further research should be done 

investigating the ecological role or sequestering and secreting UV-absorbing 

compounds.  

Additional research should seek to experimentally test if concentrations of 

MAAs are changed across the body surface if the source of UV light is located in a 
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different location. Putting a UV light source below the fish and seeing if the 

consequent response is an increase in MAA sunscreens on the ventral surface could 

achieve this.  

5.3 Significance  
 
 As the ozone hole increases, as it is predicted to do for decades to come, 

organisms like C. sordidus and S. schlegeli must be able to prevent or fix UV damage 

or face population declines (Dunlap et. al 2000, Häder et. al 2005). Unlike DNA 

repair mechanisms, which repair damage and have a limited capacity to fix mutations, 

sunscreen compounds like MAAs prevent damage before it occurs. It is essential to 

understand how fish utilize these compounds to understand what sort of pressures 

they face as UV radiation increases.  

The uptake and sequestration of MAAs is important to human populations as 

well. A sixth of the world’s population relies on productivity of oceans to obtain 1/3 

or their animal protein (Häder et. al 2005). If this productivity decreases because of 

UV it will have secondary effects for global populations. In addition, human 

populations rely heavily on fisheries and aquaculture where sunburn is a typical 

problem, which could be remedied by understanding how to provide fish with the 

means sequester and secrete MAAs (Zamzow 2004). Perhaps most importantly, as 

anthropogenic inputs to the atmosphere continue and temperatures rise, UV-induced 

damage will lower marine productivity and lessen the capability of global oceans to 

act as a CO2 sink (Häder et. al 2005). MAAs have far-reaching impacts on marine 

ecosystems from Antarctica to California, and this consequently affects human 

activities and use of our global oceans.  
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