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ABSTRACT 

Coral cover is declining at an alarming rate, and it is estimated that 60% of reefs 

worldwide may be lost by 2030.  Elevated seawater temperatures and ocean acidification are 

contributing to an increase in the frequency and severity of bleaching events.  These events 

disrupt the symbiosis between corals and their photosynthetic dinoflagellates (Symbiodinium 

spp).  Relatively little is known about the ability of corals to acclimatize to changing 

environmental conditions or whether the rate of climate change is too fast for corals to keep up, 

limiting the accuracy of future predictions for reef resilience.  However, the ability of some coral 

species to acclimatize to elevated seawater temperatures has been linked to Symbiodinium 

composition and the flexibility of these associations.  This study compares Symbiodinium 

communities and the rates of photosynthesis of two coral species, Acropora loripes and 

Platygyra daedalea, under three conditions of water temperature and pCO2: ambient, predicted 

levels for 2050, and predicted levels for 2100.  Pulse amplitude modulated (PAM) fluorometry, 

which measures chlorophyll fluorescence, was used as an indicator of photosynthetic rate.  

Photosynthetic rates of A. loripes and P. daedalea differed significantly, and PAM yields were 

reduced in the 2050 and 2100 treatments, suggesting a stress response.   The majority of 

genotypes of both coral species hosted clade C-type Symbiodinium suggesting that sub-type 

differences or host physiology may be involved in species-specific differences in 

photophysiology.  Sequencing-based methods for Symbiodinium typing would help distinguish 

these possibilities and increase understanding of the influence of Symbiodinium type on 

photosynthetic rates of corals under changing environmental conditions. 

Key words: PAM fluorometry, A. loripes, P. daedalea, acclimatization, climate change 
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INTRODUCTION 

Coral reefs are one of the most biodiverse and productive ecosystems in the world (Perry 

et al. 2013; Hoegh-Guldberg et al. 2007; Alvarez-Filip et al. 2009) yet they are also one of the 

most threatened. Since the 1970’s, there has been approximately an 80% decrease in coral cover 

in the Caribbean (Perry et al. 2013) and an estimated 50% decline in Western Pacific reefs 

(Bruno & Selig 2007).  Anthropogenic climate change is expected to accelerate the rate of coral 

decline since elevated sea water temperatures and ocean acidification stress the symbiotic 

relationship between corals and their endosymbiotic dinoflagellates (Symbiodinium spp).  Coral 

acclimatization to rising temperatures has been linked to Symbiodinium type, and while there is 

evidence that some corals can shift Symbiodinium composition to increase thermal tolerance 

(Berkelmans & van Oppen, 2006), little is known about the extent to which this is possible 

across species or if the rate at which climate change is progressing exceeds the rate at which 

corals can keep up (Hughes et al. 2003; Guest et al. 2012).  This study compares the 

photophysiology of reef-building corals under different predicted future scenarios for rises in 

seawater temperatures and ocean acidification to contribute to our understanding of coral 

acclimatization and future reef persistence.   

 

1.1 Thermal Stress and Ocean Acidification 

Increases in atmospheric CO2 concentrations induce global warming, resulting in 

elevated seawater temperatures.  These elevated water temperatures can cause corals to bleach.  

Coral bleaching occurs when corals expel their endosymbiotic dinoflagellates (Symbiodinium 

spp.), and without these photosynthetic pigments, corals lose their color (Brown 1997).  

Although the white coral tissue is still alive when bleaching occurs, stress of high intensity 
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and/or duration prevents corals from regaining their Symbiodinium, resulting in partial or 

complete coral mortality (Eakin 2010; Hoegh-Guldberg et al. 2007).  Even if corals are able to 

survive mild thermal stress-induced bleaching, their rate of growth decreases and they become 

more susceptible to disease (Hoegh-Guldberg et al. 2007).  Global ocean temperatures have risen 

by over 0.7˚C in the past 25 years (Hoegh-Guldberg et al. 2011) and are expected to rise by 3˚C 

by 2100 (Collins et al. 2014).  Bleaching events are increasing in frequency and severity as 

global temperatures continue to rise (Dove et al. 2013; Hoegh-Guldberg et al. 2007; Eakin et al. 

2010).  The third mass bleaching event is currently underway (NOAA 2016), making it an even 

more crucial time to study the potential of corals to acclimatize to changing ocean conditions.   

Increases in atmospheric CO2 pose additional challenges to coral reefs by causing ocean 

acidification.  When CO2 mixes with water, carbonic acid is formed, which then breaks down 

into bicarbonate ions and protons.  These protons combine with carbonate to form more 

bicarbonate, thus reducing the carbonate that is available to scleractinian corals and other reef 

building organisms to form their skeletons (Hoegh-Guldberg et al. 2010).  As a result, coral 

calcification rates are declining and many reefs, especially in the Caribbean, are currently or 

predicted to soon be in accretionary stasis- where net growth no longer exceeds net erosion 

(Perry et al. 2013).  In addition to its more widely known effects on calcification rates, ocean 

acidification may also play a role in coral bleaching.  Ocean acidification, especially when acting 

synergistically with elevated water temperatures, is thought to cause bleaching by impacting the 

photoprotective mechanisms in the photosystems of Symbiodinium and may lower the bleaching 

threshold of corals (Anthony et al. 2008). 
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1.2 Coral symbiosis and acclimatization 

The responses of corals to stressors like elevated temperatures and ocean acidification are 

influenced in part by Symbiodinium composition.  Algae in the genus Symbiodinium are highly 

diverse, with eight clades (A-H) and multiple genetic sub-types within each clade (Little et al. 

2004; Berkelmans & van Oppen 2006).  Coral associations with different clade types have been 

shown to have varying sensitivities to light and heat stress (Iglesias-Prieto et al. 2004; Robinson 

& Warner 2006).   For example, corals hosting clade D Symbiodinium are more thermally 

tolerant than those hosting clade C (Berkelmans & van Oppen 2006).  Some associations are 

more flexible than others, and some corals harbor more than one Symbiodinium type at the same 

time, which could allow for switches in the relative abundance of certain types (Berkelmans & 

van Oppen, 2006; Jones et al. 2008).  The flexibility of these coral-Symbiodinium associations is 

vital to the potential of corals to acclimatize to changing environmental conditions.  

Acclimatization refers to non-genetic responses to environmental changes, as opposed to 

genetic adaptation (Gates & Edmonds 1999).  Acclimatization can occur much more quickly 

than adaptation, and is therefore more relevant in terms of the potential for corals to survive 

bleaching events.  Studies in the Indo-Pacific indicate there is a possibility of coral 

acclimatization to warmer temperatures.  Guest et al. (2012) found that reefs that were more 

exposed to variable temperatures in the past were more resistant to bleaching, even some of the 

genera that are most susceptible to bleaching, like Acropora.  There is also evidence of changes 

in Symbiodinium community composition and diversity following bleaching events, where the 

holobiont, the host coral plus all of its symbionts, shifts to a higher proportion of thermally 

tolerant Symbiodinium types (Jones et al. 2008).   Berkelmans & van Oppen (2006) showed that 
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corals can increase their thermal tolerance by approximately 1-1.5˚C when their dominant 

Symbiodinium type shifts from C to D.  However, even if corals are able to acclimate to elevated 

temperatures, they will also have to deal with the compounding effects of ocean acidification in 

order to have the potential to resist future bleaching.   

 

1.3 Specific aims 

Photosynthetic rates reflect the condition of the Symbiodinium in corals and can therefore 

be used as one parameter for monitoring coral health and responses to stressors like elevated 

water temperatures and pCO2.  When corals bleach, there is non-reversible damage to the 

photosystems of the associated Symbiodinium, and this damage is reflected in the lowered 

photosynthetic rates of the coral colony.  Photosynthetic rates can also vary to reflect reversible 

photo-stress to Symbiodinium, such as when Symbiodinium divert photons away from the 

photosystems to prevent damage from high light intensities (Fitt et al. 2001).  In this study, we 

compared the photosynthetic rates of Acropora loripes and Platygyra daedalea under ambient 

temperature and pCO2 conditions, predicted conditions for 2050, and predicted conditions for 

2100.  Symbiodinium composition of the different genotypes were also examined, and together 

were used to make predictions about the ability of these corals to acclimate in the short-term to 

changes in environmental conditions predicted as a result of climate change.   

Pulse amplitude modulated (PAM) fluorometry measures chlorophyll fluorescence and 

was used in this study to compare photosynthetic rates.   PAM readings are commonly used to 

detect early signs of stress in the photosystems of Symbiodinium (Fitt et al. 2001).   We expected 

to record lower PAM readings for the corals exposed to the conditions predicted for 2100 since 

these conditions are closer to the thermal threshold of the corals, where the photoinhibition of 
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Symbiodinium and bleaching are more likely.  Additionally, we expected to see differences in 

responses to treatments based on genotype and Symbiodinium composition since genotypes with 

more thermally tolerant Symbiodinium types will likely have higher PAM readings. 

 

  



11 
 

Methods 

2.1 Study site and experimental design 

All data was collected as part of the Evolution 21 project at the Australian Institute of Marine 

Science (AIMS) in Townsville, QLD.  15 colonies (~genotypes) of two species, A. loripes and P. 

daedalea, were collected from Davies Reef (18°49.816’, 147°37.888’) (Figure 1) from 16-22 

February 2016 under the Great Barrier Reef Marine Park Authority permits G12/35236.1 and 

G14/37318.1.  Each colony was split into three fragments, and fragments were placed in shaded 

holding tanks with 0.2 μM filtered flow-through seawater (FSW, 27°C, 150 μM PAR).  At the 

Australian National Sea Simulator facility, a system of nine ~1500 L outdoor tanks (3 per 

treatment) was set up with the following three treatments: ambient water temperatures and pCO2 

(+0.0°C, 380 µatm pCO2), predicted water conditions for 2050 (+1.0°C, 685 µatm pCO2), and 

predicted water conditions for 2100 (+2.0°C, 940 µatm pCO2). The three coral fragments of each 

of the 15 genotypes of A. loripes and P. daedalea were distributed randomly throughout the 

tanks of each treatment (n=5 genotypes per species per tank, Figure 2).  Temperatures were not 

elevated above the known thermal tolerance of the coral species because the intention was not to 

kill the corals but study their responses under stress.  Ambient water conditions and seasonal 

fluctuations in salinity and water temperature were based off of the conditions present at Davies 

Reef.   Corals were exposed to the natural light/dark cycle, and the corals in each tank were fed 

Artemia naupli at a density of 5 naupli/ml daily.  Tanks were cleaned daily. 
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Figure 1. Davies Reef location.  All of the coral samples were collected from Davies Reef, Great 
Barrier Reef (18°49.816’, 147°37.888’), circled in red above, in March 2016. 
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Figure 2. Layout of corals, treatments, and tanks at the Australian National SeaSimulator 

facility at the Australian Institute of Marine Science.  The first number in the coral shape refers 
to genotype and the decimal refers to replicate number.   
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2.2 Study species 

A. loripes and P. daedalea are common scleractinian corals in the Indo-Pacific. A. loripes 

is a branching coral in the family Acroporidae that can grow as bushes or plates and is most 

commonly found on upper reef slopes (Figure 3a, Veron 2000).  P. daedalea is a massive 

meandroid or submeandroid coral in the family Faviidae (Figure 3b) and is especially prevalent 

on back reef margins (Veron 2000).  It is also found in the Persian Gulf, where temperatures 

reach 36˚C (Mostafavi et al. 2007), making it a good candidate for studying acclimatization to 

elevated temperature conditions resulting from climate change.  

 

     

Figure 3. Study species.  Acropora loripes (a) and Platygyra daedalea (b). 

 

2.3 PAM fluorometry 

A Mini-Pulse amplitude modulated (PAM) fluorometer (Walz, Germany) was used to 

measure photosynthetic rates of each coral fragment (n=3) twice per week for four consecutive 

weeks in April 2016.  PAM measures chlorophyll fluorescence, an indicator of photosynthetic 

energy conversion, by using pulses of multiple types of light to measure effective quantum yield 

a b 
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of photosystem II (EQY) in Symbiodinium (Coad 2014). The Mini-PAM was set to factory 

settings save that measuring intensity was set to 12 and gain to 5.  Measurements were always 

taken between 11am and 2pm to coincide with solar maximum (approximately 12:15pm).  The 

order of the tanks used to PAM the corals was randomly selected for each survey period to avoid 

any effect of light availability due to time of day on yield measurements. 

 

2.4 Light meters 

Light meters were set up in a grid pattern in each tank (Figure 4) to measure light variation 

within tanks, as photosynthetically active radiation (PAR) levels may contribute to variation in 

photosynthetic rates.    Tanks were measured sequentially, and meters were left for 

approximately 48 hours in each tank.  A permanent light meter was also installed in each tank 

(Figure 4), and used to obtain daily light integral (DLI) and PAR data from the dates 

corresponding to the dates when PAM recordings were taken.   

 

Figure 4. Layout of light meters in coral tanks.  Blue circles represent light meters that were left 
in each tank for 48 hours to measure light variation within tanks, and the black circle represents 
the permanent light meter that was established in each tank to compare light levels between 
tanks. 
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2.5 DNA extraction, lsu PCR, and restriction enzyme digests 

DNA from each coral genotype was extracted using Wayne’s Method (Lundgren et al. 2013).  

Pellets were resuspended in 30ml of 10 mM Tris (pH = 9) and stored at -20˚C.  DNA was diluted 

to 50 ng/µl for A. loripes and 20 ng/µl for P. daedalea with MilliQ water prior to amplification.  

Primers from the lsu rRNA region were used to target Symbiodinium types since the DNA was a 

mixture of host and symbiont DNA, and PCR was completed as described in Palstra (2000) and 

van Oppen et al (2001).  1µl of DNA sample was combined with 9µl of lsu master mix (6.35µl 

MilliQ water, 2µl 5x buffer, 0.5µl 10µM lsu primer, and 0.15µl Taq, Bioline). 35 cycles of 

amplification were completed as follows: 20 sec. at 95˚C, 30 sec. at 60˚C, 90 sec. at 72˚C.   

Yield and quality of PCR product was examined by running 2µl of PCR product on 1% agarose 

TBE gels stained with ethidium bromide (110V, 180mA, 40 min).  

The restriction enzyme Taq1 was then used to digest the PCR product.   5µl of PCR product 

was combined with 5µl of digest mix (3.85µl MilliQ water, 1µl 10x buffer, and 0.15µl of Taq1, 

New England Biolabs) and was digested for 2 hours at 65˚C.  Restriction digests were examined 

by running 2µl of the digested PCR product on 1% agarose TBE gels stained with ethidium 

bromide (110V, 180mA, 40 min) (Figure 5). 

 



17 
 

 

Figure 5. Restriction enzyme digest of lsu PCR product using Taq1.  Columns 1 and 14 are DNA 
ladders. C1, C2, and D refer to the Symbiodinium types and their corresponding banding pattern 
that was used for identification in this study.  Figure taken from Palstra 2000. 

 
2.6 Data analysis 

All statistical analyses was completed with R statistical software (Version 0.99.473) (R 

Development Core Team 2008).  A linear mixed model was used to determine the effect of 

treatment and species on PAM yields using the lme command of the nlme package (Pinheiro et 

al. 2013).  Date and genotype were included as random effects.  Wald tests were used to 

calculate significance of fixed factors, and Tukey’s post hoc tests were used to calculate 

significance among factor levels when warranted. 

An ANOVA was used to test if there was an effect of tank on DLI.  Regression analysis 

was used to determine whether there was a correlation between PAR variation (standard 

deviation) within tanks and PAM yield variation within tanks.  Symbiodinium clades were 

identified through comparison of restriction enzyme digests of lsu PCR gels to visualize banding 

patterns described in Palstra (2000) (Figure 5). 

C1 

D 

C2 
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RESULTS 

3.1 PAM fluorometry 

Five rounds of PAM were completed on April 7, 13, 18, 22, and 26 (Figure 6).  On 

average, PAM yields in P. daedalea were greater than yields in A. loripes by 0.016 (Wald, 

f=12.166, p<0.001) (Figure 7).  Treatment also had a significant effect on yield (Wald, f=7.236, 

p<0.001) (Figure 7), but treatment was not significant on an individual factor level (Tukey A-M: 

z=1.804, p=0.17; M-A: z=1.004, p=0.56; M-H: z=0.8, p=0.7).   

 

 

Figure 6.  Mean PAM yields over time for A. loripes and P. daedalea.  Dates from 1-5 represent 
the following dates, respectively: 7 April, 13 April, 18 April, 22 April, and 26 April 2016.  For 
the treatments, A indicates ambient conditions of temperature and pCO2 (blue line), H indicates 
predicted conditions for 2100 (red line), and M indicates predicted conditions for 2050 (green 
line).  Error bars indicate standard error.   
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Figure 7. Mean effective quantum yield of A. loripes and P. daedalea by treatment.  For the 
treatments, A indicates ambient conditions of temperature and pCO2, M indicates predicted 
conditions for 2050, and H indicates predicted conditions for 2100.  Error bars indicate standard 
error.   

 

3.2 Light data 

Tank did not have a significant effect on DLI (ANOVA, f=2.45, p=0.121).   On a factor 

level, the DLI between multiple pairs of tanks differed significantly with a greatest average 

difference of 1.6 between tanks 7 and 9 (Appendix A) (Figure 8).  In regards to light variation 

within tanks, there is a tendency for a negative relationship between variation of mean PAR 

levels and variation of mean PAM yields for P. daedalea (R2=0.42, f=5.03, p=0.06), but no trend 

between variation of mean PAR levels and variation of mean PAM yields for A. loripes 

(R2<0.01, f=0.03, p=0.88) (Figure 9). 
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Figure 8.  Mean daily light integral by tank.  Average daily light integral (DLI) was calculated 
based on days prior to the days that PAM fluorometry was conducted in April 2016 (6, 12, 21, 
25).  Error bars indicate standard error.   

 

 

Figure 9. Standard deviation of average photosynthetically active radiation (PAR) levels 

compared to standard deviation of coral PAM yields.  P. daedalea yields are plotted to the left 
(R2=0.42, f=5.03, p=0.06) and A. loripes to the right (R2<0.01, f=0.03, p=0.88).  PAR data was 
collected in April 2016. 
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3.3 PCR, restriction enzyme digest, and gel analysis 

DNA was extracted from 19 genotypes of A. loripes and 17 genotypes of P. daedalea.  Lsu 

PCR successfully amplified DNA for all 19 A. loripes genotypes (Figure 10) and for 15 of the 17 

P. daedalea genotypes (Figure 12).  Restriction enzyme digest by Taq1 revealed that type C was 

the most dominant Symbiodinium clade in all of the A. loripes genotypes (Figure 11, Table 1).  

Type C was also the most dominant Symbiodinium clade in P. daedalea genotypes, but there 

were two different type C banding patterns, and genotype 3 also hosts clade D-type 

Symbiodinium (Figure 13, Table 1). 

    

Figure 10. Agarose gel results from lsu PCR of A. loripes genotypes. Numbers above wells refer 
to the A. loripes genotype.  L indiates ladder (Quick-Load, 1kb, 100pb, New England BioLabs) 
and 500 and 1000bp are labeled on the ladders.  B indicates a blank run, with MilliQ water, to 
serve as a control. A, b, and c indicate samples that were run on sepearate gels.  Approximate 
band length could not be determined in (b). 
 
 

L     1      2      3    B 

L   B  4  5  6   7  8   9 

L   B  10 11 12 13 15 16 17 18 19 20 

500bp 

500bp 

1000bp 

1000bp 

a) 

 

b) 

 

c) 
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Figure 11. Agarose gel results from restriction enzyme digest of A. loripes lsu PCR product.  
Numbers above wells refer to the A. loripes genotype.  L indiates ladder (Quick-Load, 1kb, 
100pb, New England BioLabs) and 500 and 1000bp are labeled on the ladders.  A, b, and c 
indicate samples that were run on sepearate gels.  Approximate band length could not be 
determined in (b). 
 

 

Figure 12. Agarose gel results from lsu PCR of P. daedalea genotypes. Numbers above wells 
refer to the P. daedalea genotype.  L indiates ladder (Quick-Load, 1kb, 100pb, New England 
BioLabs) and 500 and 1000bp are labeled on the ladders.  B indicates a blank run, with MilliQ 
water, to serve as a control. 

 

 

L    1   2    3   4    5    6    7   8     9   10   11  12 13 14  15 16  17   B   L 

  L    A1     A2    A3  

L    4    5    6    7     8     9 

L   10  11  12   13   15  16  17  18  19  20 

1000bp 

500bp 

500bp 

1000bp 

a) 

 

c) 

 

b) 

 

1000bp 

500bp 
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Figure 13. Agarose gel results from lsu-PCR of P. daedalea genotypes.  1-17 refers to different 
P. daedalea genotypes.  L indiates ladder (Quick-Load, 1kb, 100pb, New England BioLabs).  B 
indicates a blank run, with MilliQ water, to serve as a control. 
 

Table 1. Dominant symbiont type for each genotype of A. loripes and P. daedalea. Dashes 
indicate that there was no data available for that genotype. Asterisks indicate a potentially 
different type of clade C Symbiodinium. 

Genotype A. loripes P. daedalea 

1 C C 
2 C C 
3 C D 
4 C C* 
5 C - 
6 C - 
7 C C 
8 C C* 
9 C C 

10 C C* 
11 C C 
12 C C 
13 C C 
14 - C 
15 C C 
16 C C 
17 C C 
18 C - 
19 C - 
20 C - 

 

 

L     1    2     3     4    5    6   7   8     9    10   11  12 13  14  15  16   17    L 

1000bp 

500bp 
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DISCUSSION 

Photosynthetic rates of corals under different scenarios of elevated water temperatures 

and pCO2 were compared, and we expected these elevated conditions to stress the symbiosis 

between coral and Symbiodinium, resulting in lowered photosynthetic rates.  Consistent with this 

expectation, lower PAM yields were measured in the corals exposed to conditions predicted for 

2050 and 2100, even within the relatively short time span that corals were exposed to the 

different treatments (Figure 7).  As PAM yields also differed between species, I hypothesized 

that variation in Symbiodinium type may have been a factor.  However, most coral genotypes 

hosted the same dominant Symbiodinium clade, therefore observed differences in the 

photophysiology of corals may be attributable to sub-cladal variation in Symbiodinium types or 

host species-specific physiology.  Alternatively, light variation between and within tanks may 

also have been partially responsible for variation in PAM yields.   

The efficiency of photosystem II of in hospite Symbiodinium differed between coral 

species and in response to treatment, as reflected in the PAM yields of the corals.  Corals in 

ambient water temperature and pCO2 had the highest photosynthetic yields, and yields decreased 

as the treatment intensity increased (Figure 7).  This was expected as high temperatures stress the 

coral-algae symbiosis by damaging the photosystems of Symbiodinium (Fitt et al. 2001), so the 

lowered PAM yields of corals in the elevated temperature and pCO2 treatments is likely an initial 

stress response.  However, physiological responses to treatments may differ long term since 

measurements for this study were completed within the first two months of corals being exposed 

to different treatments.  Moderately elevated pCO2 levels have been found to cause increased 

productivity in some coral species (Castillo et al. 2014), but this pattern was not observed in the 

present experiment.  Corals in the moderately increased pCO2 and temperature tanks still had 
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slightly lower photosynthetic rates than those in the ambient treatment tanks (Figure 7).  The 

synergistic effects of elevated temperature and pCO2 may have cancelled out any increase in 

productivity that would have resulted from moderately elevated pCO2 alone.  Though elevated 

pCO2 may not be as significant of a stressor as temperatures to some coral species (Castillo et al. 

2014), the relative effects of pCO2 and temperature cannot be determined since they were 

confounded within the present experimental design.    

Restriction enzyme digest of symbiont lsu rRNA for A. loripes and P. daedalea revealed 

slightly different Symbiodinium community profiles.  A. loripes hosted what appeared to be a 

single type of clade C Symbiodinium (Figure 11).  P. daedalea also predominantly hosted C-type 

Symbiodinium, but there appeared to be two separate clade C sub-types (Figure 13).  In addition, 

one genotype of P. daedalea also hosts clade D Symbiodinium (genotype 3, Figure 13), which 

was never observed in A. loripes.  Variation in Symbiodinium types can significantly influence 

thermal tolerance of the coral holobiont (Berkelmans & van Oppen 2006). The observed 

variation in P. daedalea symbiont communities suggests the greater potential for this species to 

acclimatize to changing environmental conditions by switching dominant Symbiodinium types, 

which may partially explain its uniformly elevated photosynthetic yields in the present 

experiment (Figure 7).  Fisher and Dove (2011) found that P. daedalea, along with Acropora 

millepora, Acropora aspera and Acropora formosa were generally dominated by type C3 

Symbiodinium near Heron Island, Great Barrier Reef.  Seven common reef-building corals were 

examined, some that were dominated by type C3 and some by C15.  Type C3 was found to be 

more susceptible to thermal stress than type C15, providing evidence of variation in responses to 

heat stress within a single Symbiodinium clade.  Consistent with the present results, Tonk et al. 

(2013) found that P. daedalea can host type C3 in addition to other C3 variants (C3h and 
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C3_Fisher).  A 2007 study in the Persian Gulf found clade D Symbiodinium in all of the 8 coral 

species studied, including P. daedalea, and this dominance may be explained in part by the high 

temperature variation characteristic of the area (Mostafavi et al. 2007).  A. loripes has only been 

reported to associate with type C3 thus far (Tonk et al. 2013).  If A. loripes only forms 

associations with C3 while P. daedalea can host more types, this supports our assertion that P. 

daedalea may be more tolerant to the elevated temperature and pCO2 conditions since this 

species may have greater potential for symbiont shuffling and flexibility of associations.  Longer 

term studies comparing changes in Symbiodinium community composition in P. daedalea and A. 

loripes over time are necessary to support this hypothesis.    

Variation in Symbiodinium types may not be the only explanation of differences in 

photophysiology between species.  Host genotype is also known to influence bleaching 

thresholds (Abrego et al. 2008).  Slower growing massive corals, such as P. daedalea, with high 

metabolic rates are thought to have a better chance at acclimatizing to changing environmental 

conditions than fast growing branching species with low metabolic rates such as those in the 

genus Acropora (Gates & Edmonds 2008).  If we assume that both P. daedalea and A. loripes 

were dominated by the same type of clade C Symbiodinium, host effects may be at play.  There is 

emerging evidence that stress responses of corals to heat and light are influenced not only by 

Symbiodinium type, but by also by host responses and interactions between host and symbiont.   

Protective mechanisms of the host coral, such as the production of certain enzymes and 

fluorescent pigments, can influence the holobiont’s stress responses (Abrego et al. 2008).  Host-

symbiont interactions maybe have influenced the differences in photosynthetic rates between A. 

loripes and P. daedalea in this experiment, though specific mechanisms of host responses need 

to be further explored. 
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A primary limitation to this study was that Symbiodinium clades could not be definitively 

narrowed to specific types.  More specific information about Symbiondinium types of each 

genotype would contribute to a clearer understanding of why there was an effect of species on 

photosynthetic rates.  Knowledge of the specific Symbiodinium sub-types would also allow us to 

compare the effect of treatment and dominant Symbiondinium type on photosynthetic rates.  

There is also the potential that the P. daedalea PCR samples were contaminated since faint bands 

were present in the blank control run (Figure 12).  However, no bands were present in wells 5 

and 6, suggesting that not all of the samples could have been contaminated. 

Yet another alternative explanation for variation in photobiology between species could 

be environmental variance across treatment tanks.  Other studies have shown that light 

environment can impact photosynthetic function of Symbiodinium. When corals are exposed to 

strong light levels, photoinhibition can occur, and there is reduced activity of photosystem II (Fitt 

et al. 2001; Murata et al. 2006).  Seasonal changes in light intensity influence Symbiodinium 

densities and coral biomass, likely because higher PAR levels, especially when combined with 

elevated temperatures, reduce the photosynthetic rates of Symbiodinium (Fitt et al 2001).  On a 

smaller scale, microhabitat light differences may similarly impact Symbiodinium photosynthetic 

rates, with corals in more exposed microhabitats having lowered photosynthetic rates to prevent 

damage to photosystem II.  In the present experiment, DLI did not vary significantly among 

tanks, but there were some significant differences between tanks on a factor level (Figure 8). I 

hypothesized that these differences may be influencing PAM yields, and the effect of treatment 

may be stronger if DLI was more consistent among tanks.  There was a marginally significant 

relationship between high variation in light and high variation in photosynthetic rates in P. 

daedalea (Figure 9).  However, the pattern did not conform to expectations as greater 
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photosynthetic variance was associated with reduced light variance across tanks.  In addition, 

this pattern was not observed with A. loripes (Figure 9), which suggests that differences in 

photosynthetic yields among species and treatments was not a factor of varying environmental 

conditions.  

   

CONCLUSION 

The observed decreases in photosynthetic rates of A. loripes and P. daedalea likely 

represent stress responses of the corals to elevated conditions of water temperature and pCO2, 

with the most extreme responses seen in the conditions predicted for the end of the century.  P. 

daedalea had higher photosynthetic rates than A. loripes.  Since the genotypes of both species 

were dominated by clade C Symbiodinum, species differences may be due to differences in 

specific types of clade C Symbiodinium, host factors, or a combination of the two.  Future 

research into the stress responses of corals associated with different Symbiondinium types will 

further our knowledge of the likelihood of coral acclimatization to the changing environmental 

conditions predicted as a result of climate change and which corals may be most successful.  
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Appendix A 
Simultaneous Tests for General Linear Hypotheses 
Multiple Comparisons of Means: Tukey Contrasts 
Fit: aov(formula = DLI ~ tank, data = DLIdat) 
Linear Hypotheses: 
           Estimate Std. Error t value Pr(>|t|)     
2 - 1 == 0   1.3620     0.2408   5.656    <0.01 *** 
3 - 1 == 0   0.5120     0.2408   2.126   0.4636     
4 - 1 == 0   1.1520     0.2408   4.784    <0.01 *** 
5 - 1 == 0   0.6660     0.2408   2.766   0.1429     
6 - 1 == 0  -0.0520     0.2408  -0.216   1.0000     
7 - 1 == 0  -0.1680     0.2408  -0.698   0.9987     
8 - 1 == 0   1.3220     0.2408   5.490    <0.01 *** 
9 - 1 == 0   1.4360     0.2408   5.963    <0.01 *** 
3 - 2 == 0  -0.8500     0.2408  -3.530   0.0190 *   
4 - 2 == 0  -0.2100     0.2408  -0.872   0.9938     
5 - 2 == 0  -0.6960     0.2408  -2.890   0.1067     
6 - 2 == 0  -1.4140     0.2408  -5.872    <0.01 *** 
7 - 2 == 0  -1.5300     0.2408  -6.354    <0.01 *** 
8 - 2 == 0  -0.0400     0.2408  -0.166   1.0000     
9 - 2 == 0   0.0740     0.2408   0.307   1.0000     
4 - 3 == 0   0.6400     0.2408   2.658   0.1797     
5 - 3 == 0   0.1540     0.2408   0.640   0.9993     
6 - 3 == 0  -0.5640     0.2408  -2.342   0.3297     
7 - 3 == 0  -0.6800     0.2408  -2.824   0.1247     
8 - 3 == 0   0.8100     0.2408   3.364   0.0307 *   
9 - 3 == 0   0.9240     0.2408   3.837    <0.01 **  
5 - 4 == 0  -0.4860     0.2408  -2.018   0.5357     
6 - 4 == 0  -1.2040     0.2408  -5.000    <0.01 *** 
7 - 4 == 0  -1.3200     0.2408  -5.482    <0.01 *** 
8 - 4 == 0   0.1700     0.2408   0.706   0.9986     
9 - 4 == 0   0.2840     0.2408   1.179   0.9587     
6 - 5 == 0  -0.7180     0.2408  -2.982   0.0847 .   
7 - 5 == 0  -0.8340     0.2408  -3.463   0.0230 *   
8 - 5 == 0   0.6560     0.2408   2.724   0.1553     
9 - 5 == 0   0.7700     0.2408   3.198   0.0490 *   
7 - 6 == 0  -0.1160     0.2408  -0.482   0.9999     
8 - 6 == 0   1.3740     0.2408   5.706    <0.01 *** 
9 - 6 == 0   1.4880     0.2408   6.179    <0.01 *** 
8 - 7 == 0   1.4900     0.2408   6.187    <0.01 *** 
9 - 7 == 0   1.6040     0.2408   6.661    <0.01 *** 
9 - 8 == 0   0.1140     0.2408   0.473   0.9999     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Adjusted p values reported -- single-step method) 
 


