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ABSTRACT 
Primary productivity within mangroves results from detrital and coprophagous interactions on 
the forest floor. The feeding behaviors of Sesarmid crabs (Decapoda:Brachyura) alter the 
structural and chemical composition of benthic sediment through the consumption and 
incorporation of mangrove leaf-litter. In doing so they create habitats for organisms that in turn 
provide an additional food source for herbivorous crabs. Species specific herbivory was observed 
in order to understand the implications of Sesarmid activity on sediment composition. The study 
was conducted at two contrasting mangrove forest sites, one in a protected area at Jozani and the 
other in a disturbed area at Pete in Zanzibar, Tanzania. Equal quantities of leaves from three tree 
species (Rhizophora mucronata, Bruguiera gymnorrhiza and Ceriops tagal) were added to 
experimental plots. The level of herbivory for each leaf was observed and compared in order to 
assess the presence of dietary preference in Sesarmid crabs. Results indicate that crab herbivory 
is lower in community used Pete mangroves than at the protected site. Green leaves were fed 
upon more than senescent yellow leaves. There was a clear preference of crabs for mature green 
R. mucronata leaves. The results of preferential herbivory are then applied to the larger 
framework of mangrove restoration. The implications of leaf preference may be an invaluable 
component for future reforestation projects that aim to replant trees and restore ecosystem 
functionality as well. 
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1.0 INTRODUCTION  

Mangroves are intertidal tropical and subtropical forests composed of specially adapted 

facultative halophytes. With over 60 species worldwide (Macnae, 1968), mangroves provide 

essential habitats for both terrestrial and aquatic organisms. In addition to numerous socio-

economic benefits, the ecosystem services mangroves provide make them among the most 

important coastal environments. The structural complexity of mangrove forests assists in 

shoreline stabilization (Bosire et al., 2003). In coastal communities timber is used for fuel, boats, 

and home construction. Mangroves contribute to the subsistence of local fisheries by acting as 

either a direct or indirect food sources and as a nursery for future catch. A number of studies 

have attempted to place a monetary value on coastal forests. For instance, Walton (2006) found 

that replanted Philippine mangroves provided 578-25678 kg ha-1 yr-1 (US$463-2215 ha-1 yr-1) in 

fish catch. Increased awareness of mangrove influence has in recent years prompted escalated 

conservation efforts. Throughout the world, numerous rehabilitation studies have occurred with 

varying degrees of success (Kaly & Jones, 1998; Bosire et al., 2003, 2008; Kirui et al., 2007). 

While most researchers recognize that it is unrealistic for restoration to exact natural conditions, 

an approximation of the original system may be possible. Of utmost concern is the return of 

major ecosystem processes. 

 

1.1 Conceptual Framework 

Mangrove forest ecosystems cover an estimated 14.7 million ha of the world’s tropical 

shorelines (Bosire et al. 2008), representing a decline from the reported 19.8 million ha in 1980. 

Anthropogenic factors are the leading cause for reductions in mangrove area. In response to the 

widespread degradation of the world’s mangroves the number of studies focusing on these 

complex ecosystems has been steadily increasing for decades. Based in Florida, the classic works 

of Odum and Heald (Odum, 1971; Odum and Heald, 1974) focused on the influence of abiotic 

factors (tidal inundation, salinity, and sediment characteristics) as the primary drivers of 

ecosystem function. More recent work in the Western Indian Ocean (WIO) has encouraged a 

shift towards viewing benthic fauna as integral to forest structuring processes. Burrowing crabs 

of families Graspidae and Ocyopididae (Decapoda: Brachyura) are the most widely researched 

mangrove macrofauna. Through the incorporation of leaves by burrowing and consumption, 

these crabs affect: nutrient retention, litter decomposition, mangrove colonization and zonation, 
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soil chemistry, and food web dynamics (Robertson and Daniel, 1989; Smith, 1991; Alongi, 1994; 

Woitchik et al., 1997; Lee, 1998; Skov and Hartnoll, 2002; Krauss et al., 2007). 

 Although some arboreal climbing species actively forage on tree leaves, the majority of 

herbivorous crabs rely on mangrove litter. In the WIO the main agents of continuous litter 

turnover are Sesarmid crabs (Graspididae) (Lee 1998). Most Sesarminae are either grazers or 

shredder detrivores dependent on mangrove biomass. Crabs forage continually on fallen leaves; 

either feeding directly or transporting them to burrows for later consumption. Studies throughout 

the Indo-Pacific region have documented varying, but usually substantial rates of litter removal 

by mangrove crabs (Steinke et al., 1993; Robertson and Daniels, 1989; Skov, 2001; Olafsson et 

al., 2002). Research from a variety of mangrove environments have shown that crabs are 

responsible for removing 30-90% of annual litter fall (Kristensen, 2008). 

 The assimilation of mangrove organic material by crabs is very low (<50 %) and most 

material consumed is egested as faecal matter (Lee, 1993; Nordhaus and Wolff, 2007). In his 

review of the Sesarminae, Lee (1998) recognized that through their involvement with detrital and 

coprophagous food chains, in conjunction with differential propagule consumption and 

bioturbation, Sesarmids can affect the growth and production of mangrove trees. The extensive 

contributions of mangrove crabs have led to their distinction as ecosystem engineers (Kristensen 

2008).  Jones et al. (1997) defines organisms as ecosystem engineers when they ‘directly or 

indirectly modulate the availability of resources (other than themselves) to other species, by 

causing physical state changes in biotic or abiotic materials. In so doing they modify, maintain, 

and/or create habitats.’  

 Mangrove crabs are allogenic engineers in that they are able to change the environment by 

transforming living material from one state to another via mechanical and other actions. Their 

active incorporation of leaf-litter ensures the retention of mangrove productivity within the 

ecosystem. Leaf incorporation maintains a rich and biogeochemically heterogenous sediment. By 

macerating and burrowing, crabs accelerate the microbial decay of leaves. Following 

consumption, egested fecal matter promotes bacterial and algal populations. Their burrows 

physically affect sediment topography and chemistry. Crab bioturbation significantly decreases 

ammonium and sulphide concentrations in mangrove soil, positively benefiting mangrove 

productivity (Nordhaus and Wolff, 2007).  Burrows provide opportunities for the mixing of 

groundwater and overlying water resulting in the removal of salt from around roots and the 
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exchange of soil nutrients. Through their comprehensive involvement with ecosystem 

functioning burrowing crabs are a fundamental component of mangrove forests in the WIO. 

 

1.2 Status of Mangrove Restoration Projects 

 Kirui et al. (2007) recognized that mangrove reforestation projects often suffer from low 

sapling survival, especially after transplanting saplings from nurseries to reforestation areas. This 

may be due to the sediment conditions at the target site, the planting strategy, or failure to 

reestablish ecosystem functions. Bosire et al. (2008) defines functionality as the ability of 

restored mangroves to process nutrients and organic matter, trap sediments, provide food and 

habitat for animals, protect shorelines, provide plant products and a scenic environment, in a 

similar fashion to natural mangrove forests. Considering the direct and indirect forces Sesarmid 

crabs are capable of exerting, it is apparent that their role must be incorporated into future 

restoration efforts. An increased understanding of mangrove crab feeding ecology will assist in 

devising natural reforestation regimes. 

In the present study, working in an East African mangrove ecosystem, I attempted to 

evaluate the potential impacts of species-specific foraging by Sesarmid crabs and the effects of 

litter retention and incorporation on generating favorable sediment. This study intended to 

determine: 

(i) the existence of preferential feeding within the leaf litter layer 

(ii) the mangrove characteristics that may influence dietary specialization 

(iii) the implications that leaf predilection may have for reestablishing functional 

mangrove ecosystems. 
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2.0 STUDY AREA 

 

The Zanzibar archipelago is situated 40 km off the 

cost of Tanzania about 6° south of the equator. According to 

the 2002 national census 984,625 people live on Zanzibar’s 

two small islands Unguja and Pemba (1,666 km2 and 988 

km2 respectively). Zanzibar is characterized by a tropical 

climate with 1500 mm annual rainfall on average and 

temperature extremes from 24° to 28° C (Silima et al., 2009).  

 Mangrove forests comprise 197 km2 (7.4%) of Zanzibar’s 2650 km2, with the largest 

mangrove ecosystem found around Chwaka, Makoba and Menai Bay in the Pete region of 

Unguja and in the Northeast coast of Pemba (Francis and Brycesson, 2001). Of the reported 

20,000 ha of mangrove forest on Zanzibar, approximately 14,000 hectares (70%) are found on 

Pemba and 6,000 hectares (30%) on Unguja. They make up the second largest forest ecosystem 

after coral rag.  

 Both study sites, Jozani and Pete,  are found near the Menai Bay in Unguja (Appendix 1). 

Located about  40 km south east of Zanzibar Town the area is part of the Pete-Jozani shehia. In 

their terrestrial survey Leskinen et al. (1997) identified nine species of mangrove in Zanzibar: R. 

mucronata, B. gymnorrhiza, C. tagal, X. granatum, H. littoralis, A. marina, L. racemosa and S. 

alba. In the Menai Bay the most common species are R. mucronata (20% relative dominance), B. 

gymnorrhiza (29% relative dominance), C. tagal (42% relative dominance) (Othman, 2005). The 

local communities of Pete have traditionally relied on subsistence agriculture and the harvesting 

of natural resources, especially timber from nearby terrestrial ecosystem for fuel and 

construction materials. 

In terms of the faunal composition, the crabs are the most conspicuous invertebrates of 

the mangroves of Tanzania. The upper zone is often inhabited by marsh crabs (Sesarma). In the 

Ceriops and Bruguiera zone, Uca spp (the fiddler crabs) are the most dominant. The creeks are 

inhabited by Uca and Scylla serrata. On sandy portions soldier crabs (Dotilla spp) are common 

and Dotilla fenestrata is reported to be restricted to the East African coast (Semesi, 1992). 
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2.1 JCBNP Protected Mangrove 

The Jozani Chwaka Bay National Park (JCBNP) is the first and only national park in 

Zanzibar, Tanzania. Covering over 50 km2, the forest is home to a number of plant and animal 

species. Following the revision of the forest policy in 1995 a proportion of the land traditionally 

used by Pete residents was transferred into a conservation area and tourism site. Adjacent to the 

parks entrance, a 1 km road leads to the JCBNP managed mangrove forest. A large stream passes 

through the woods and at spring high tides the entire area is entirely submerged. The sediment is 

a neutral dark black mud (pH 7.06) containing fine particulates and, upon close inspection, an 

abundance of petiole remnants. A single boardwalk passes through the dense woods. As it is one 

of the parks major attractions for ecotourism, this patch of mangrove forest is protected from any 

form of timber harvest, fishing or other form of extraction. As a result the area is host to an array 

of fish, bird, and mangrove species. Numerous mature trees of C. tagal, B. gymnorrhiza, and R. 

mucronata are found in relatively equal distributions. Conservation efforts at Jozani have helped 

maintain what is becoming a rare example of an undisturbed mangrove forest.  

 

2.2 Pete Disturbed Mangrove  

The second site is an area of intense deforestation. Outside the JCBNP protected area 

more than 80% of the Pete mangroves shows signs of overharvesting, with stump densities 

averaging 2241 per ha (Othman, 2005). The second experimental area is situated near the Jozani 

mangrove but varies considerably in its ecological composition due to intense deforestation. The 

area is dominated almost exclusively by young R. mucronata trees about 4-5 m tall. There are 

numerous stumps and no mature adult trees. Around the periphery of the forest exist few young 

B. gymnorrhiza and C. tagal trees and seedlings. Snaking through this young woods are 

numerous shallow tidal streams. The sediment is a neutral silty mud (pH 6.82) with a hard base 

of clay ~8 cm beneath the surface. There are C. tagal reforestation efforts interspersed within the 

forest. Small grids of 15-25 seedlings <1 m tall recently planted by local community members. 

Ceriops tagal is frequently utilized for its hard wood and quality charcoal. This may explain the 

cause for its removal and subsequent replanting. 
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3.0 METHODS 

 

3.1 Study System 

Selective herbivory was observed at both sites. At the undisturbed JCBNP mangrove two 

50 m transects were founded 25 m from the visitor boardwalk. The transects were spaced 25 m 

apart and oriented perpendicular to the coast (120° Magnetic N). Along each, five 1 m-2 quadrats 

were established every 10 m. An additional observational transect with ten 1 m-2 quadrats every 

5 m was laid out (oriented 40° N) to record burrow frequencies and sesarmid behavior. An 

identical experimental system was constructed at the disturbed Pete mangrove. Approximately 

25 m from the habitat edge the first 50 m transect was founded with the second ~10 m away. In 

accordance with the JCBNP site, both transects at Pete were oriented to 120° N with five 

quadrats every 10 m along their length. Again a 50 m observational transect was established. 

 To record incidences of preferential feeding specific quantities of leaves from three 

mangrove species were added along the trial transects. Prior to trial periods all previous litter fall 

was removed. To each quadrat 10 new leaves (half senescent yellow leaves and half mature 

green leaves) of B. gymnorrhiza, C. tagal, and R. mucronata were introduced. After four hours 

the extent of herbivory was scored for each group of 30 leaves. Based on previously collected 

leaf samples, I devised the following scale: 

None to immeasurable consumption: Non; 10% 

or less consumed: Level I; 25% consumed: 

Level II; 50% consumed: Level III; 75% 

consumed: Level IV. Leaves in which only the 

petiole remains or are completely absent 

(assumed burial): Level V. The percent of 

herbivory was photographed for individual 

leaves to allow post trial comparisons. 

 

3.2 Feeding Trials 

 To understand behavioral characteristics of resident crab populations 15 minute 

observational surveys were conducted. The number of burrows was recorded for each plot. Ten 
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minutes were allowed for disturbed crabs to reemerge from their burrows. The activities of 

present crabs were recorded. Following field observations crabs were identified taxonomically. 

 Feeding experiments started 6 November 2009. Sesarmid crabs retreat to their burrows 

during tidal inundation thus leaf removal does not occur at high tide; all work was therefore 

conducted at low tide. Trials at JCBNP protected mangrove occurred from 7-11 November 2009. 

During high neap tides (8-14 November) the forest floor remained above water. Trials at the Pete 

disturbed mangrove occurred from 13-17 November 2009. Some quadrats were located on 

streambeds that remained flooded during high spring tides (15-21 November); measurements of 

herbivory were unavailable for these plots. Preceding the experimental periods all cordon and 

ribbon was removed from study areas.  

The results for over 2500 leaves were compiled and assessed for indications of 

preferential herbivory. 

 

4.0 RESULTS 

 

4.1 Field Observations 

 Crabs had carapace widths ranging from <10 mm to ~ 50 mm. Based on eye position, 

cheliped morphology and coloration observed members of the sub-family Sesarminae 

(Graspidae) were identified as Sesarma guttatum (A. Milne Edwards). Sesarmids were 

distinguishable by their dark purple to brown claws in which both the immobile part (propodus) 

and mobile part (dactylus) had ridges (tubercles) and were colored bright red-orange. 

Ocyopodids were easily identifiable as Uca spp. (fiddler crabs) by the prominent, brightly-

colored cheliped of sexually dimorphic males. Both crab families were omnipresent in the study 

areas but occupied different habitats. Sesarmids are common in wet and muddy areas with 

sufficient canopy cover. The Ocyopodids are often observed in areas with little canopy cover and 

firm, dry sandy or clay soil. Fiddler crabs are not involved in leaf litter consumption; most time 

is spent reinforcing territorial boundaries through characteristic displays (Bisang, 2009 unpub. 

dat.).  

 The feeding ecology of Sesarmid crabs was observed. Most time was spent foraging on 

microfauna within the sediment. As crabs moved throughout territories they would continually 

glean organic material from the soil surface with their chelae. Leaf herbivory was observed 
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within the experimental plots. Crabs would typically approach the leaf near the petiole. One 

cheliped would grasp the leaf while the other was used to tear off <1 mm sections of the leaf. 

This motion was repeated with the grasping claw and feeding claw alternating. Leaves were also 

the subjects of territoriality. Smaller crabs were usually deterred if the encroaching crab was 

larger in size. In some instances Sesarmids would pick the leaves up and carry them to their 

burrows to avoid confrontational encounters. 

 

4.2 Assessing Preferential Feeding by Leaf Damage  

 Sampling from across species showed that exactly 12% (n =334) of 2790 added leaves 

had quantities of consumption ranging from level I (10% herbivory) to level V (leaf absent). No 

leaves exhibited 100% herbivory; Level V leaves were absent from experimental plots due to 

crab activity or other abiotic factors. 

 Leaves with observable quantities of consumption (n =252) were recorded. Incidences of 

herbivory in both sites were greatest for mature green R. mucronata (RM) leaves (n =145). 

Senescent leaf herbivory was greatest with B. gymnorrhiza leaves (n =32). Senescent leaves from 

C. tagal exhibited no herbivory (Table 1).   

 
Table 1. Comparative number of consumed leaves for each species at the two study sites of Jozani and Pete, 
Zanzibar, Tanzania. 

Site 

Species 

C. tagal R. mucronata B. gymnorrhiza 

Green Senescent Green Senescent Green Senescent 

Jozani 16 0 121 9 33 28 

Pete 4 0 24 7 6 4 

TOTAL 20 0 145 16 39 32 

 
The general herbivory (senescent and mature) was assesed for both study sites (Figure 1). 

At the Jozani study site 94% of added C. tagal leaves, 70% of added R. mucronata leaves and 

83% of added B. gymnorrhiza leaves exhibited no signs of herbivory. At the Pete site 98% of 

added C. tagal leaves, 91% of added R. mucronata leaves and 95% of added B. gymnorrhiza 

leaves exhibited no signs of herbivory. Percentage of leaves with no herbivory was less at Jozani. 
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  Observable herbivory was greatest at level I. At Jozani 2% of added C. tagal leaves, 

17% of added R. mucronata leaves and 9% of added B. gymnorrhiza leaves exhibited levels of 

herbivory in which 10% of their area was lost. At Pete Level I was also the most represented 

herbivory level, albeit with lower percentages; 1% of added C. tagal leaves, 6% of added R. 

mucronata leaves and 2% of added B. gymnorrhiza leaves exhibited levels of herbivory in which 

10% of there area was lost. 

 

 
Figure 1. Overall percentage levels of mangrove leaf herbivory by crabs at the two sites of Jozani and Pete, 
Zanzibar, Tanzania. Roman numbers I – IV, non and missing categories represent herbivory classes as described in 
the methods (para 2). 
 

 The amount of selective herbivory (either mature or yellow) was assessed for both study 

sites (Table 2). In both study sites green leaves experienced more herbivory than senescent 

leaves. Approximately 81% of green leaves showed no signs of crab activity. Whereas, 96% of 

senescent leaves showed no signs of herbivory. The highest percentage of herbivory was 

observed in R. mucronata leaves at Jozani; more than half the leaves showed signs of crab 

activity. There were no instances of observable herbivory on the senescent leaves of C. tagal in 

either study site. Again, the most the observed leaves had 10% of their area lost (Level I). 
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Table 2. Comparative percentages of selective herbivory on leaves of three mangrove species at the two sites of 
Jozani and Pete, Zanzibar Tanzania. Roman numbers I – IV, non and missing categories represent herbivory classes 
as described in the methods (para 2). 

Site Leaf type Species 
Percentage herbivory 

non I II III IV Missing 

Jozani green C. tagal 90 5 1 0 0 4 

R. mucronata 44 32 12 3 2 7 

B. gymnorrhiza 82 9 4 0 0 5 

senescent C. tagal 98 0 0 0 0 2 

R. mucronata 95 2 2 0 0 1 

B. gymnorrhiza 85 8 3 0 0 4 

Pete green C. tagal 96 2 0 0 0 2 

R. mucronata 86 9 1 0 0 4 

B. gymnorrhiza 93 3 0 0 0 4 

senescent C. tagal 100 0 0 0 0 0 

R. mucronata 97 3 0 0 0 0 

B. gymnorrhiza 96 2 0 0 0 2 

 

The total levels of consumption were added for each study site. Incidences of herbivory were 

greatest for mature green R. mucronata leaves. All levels of consumption were observed, with 

10% herbivory most frequently represented (68%, n =98), followed by 25% herbivory (24%, n 

=35), 50% herbivory (5%, n =7), and 75% herbivory (3%, n =5). Incidences of herbivory in both 

sites for mature B. gymnorrhiza leaves were less (n = 39). All levels of consumption were 

observed, with 10% herbivory most frequently represented (66%, n =26), followed by 25% 

herbivory (26%, n =10), 50% herbivory (5%, n =2), and 75% herbivory (3%, n =1). The fewest 

incidences of herbivory were observed on green C. tagal leaves (n =20). Consumption levels of 

10% (75%, n =15), 25 % (20%, n =4) and 75% (5%, n =1) were observed. 

 

5.0 DISCUSSION 

5.1 Differences in Herbivory Between Sites 

 Consumption levels were lower at the disturbed Pete forest (Table 1 & Figure 1). 

Approximately 95% of all experimentally added leaves, both senescent and mature, showed no 

signs of herbivory. The Pete trials took place during neap tides. Some plots remained inundated 

for the entire trial period and were thus devoid of foraging. The inundation of the study area may 
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also have affected the timing of crab emergence, resulting in less time for litter foraging. The 

ecological composition of the disturbed mangrove likely also influenced feeding activity. One of 

the most evident differences between study sites was the prevalence of canopy gaps in the 

disturbed forest. Insolation, exposure to the suns rays, has been shown alter soil chemistry and 

faunal composition (Kirui et al. 2007). Half of the experimental plots fell within these unshaded 

gap areas. The gaps at Pete tended to have more sandy soil and were dominated by Uca spp. By 

contrast, those areas with dense stands of young R. mucronata trees possessed dark mud and 

Sesarmid populations. However, due to the altered environmental conditions Sesarmid densities 

were much lower at Pete (Bisang, 2009, unpub. dat.). Impoverished crab densities due to altered 

forest conditions offer an explanation for reduced level of consumption.  

 Although, fewer leaves were consumed at Pete R. mucronata was still preferred over C. 

tagal and B. gymnorrhiza. Previous studies believed that herbivore preference may be influenced 

by the most abundant trees species. The species dominance hypothesis has shown not to be in 

effect in mangroves (Lee, 1998). There are other reasons explaining observed preferential 

feeding. 

 

5.2 Preferential Herbivory 

The reasons for leaf herbivory have remained the subject of much study (Skov & 

Hartnoll, 2002; Erickson et al., 2003; Thongtham & Kristensen, 2005; Nordhaus & Wolff, 2007; 

Chen & Ye, 2008; Ya et al., 2008; Thongtham et al., 2007; Imgraben & Dittman, 2008). 

Although mangrove biomass is a major component of Sesarmid diets, it has relatively low 

nutritional value. The leaves of many species have concentrations of polyphenolic compounds 

such as tannins and high C:N ratios, up to ~100 in some species. In order for an invertebrate to 

maintain growth, carbon to nitrogen ratios of consumed materials must not exceed the Russel-

Hunter index of 17:1 (Russel-Hunter, 1970). Leaf palatability is also age dependent, mature 

green leaves usually contain more nitrogen than senescent yellow leaves. Thongtham and 

Kristensen (2005) determined that Neosemartium versicolor crabs fed discriminately on leaves at 

different stages of decomposition. They found that senescent Rhizophora apiculata leaves (C:N 

=123) had the lowest levels of consumption. The nitrogen rich green leaves (C:N =50) were 

consumed less than brown decaying leaves (C:N =83) but more than yellow leaves. Yellow 

leaves just fallen from trees are poor in nitrogen and rich in tannins. The higher palatability of 
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brown leaves compared with green and, in particular, yellow leaves probably results from 

improved nutritional value and removal of inhibitory compounds by the aging process. Although 

decomposed leaves were not used in the present study, green leaves exhibited greater herbivory 

than yellow leaves (Table 2). Approximately 96% of senescent leaves added to both study areas 

showed no signs of herbivory. In both study areas senescent leaves of c. tagal were never 

observed with consumption damage. By contrast, green R. mucronata leaves had the highest 

percentage of leaves with observable herbivory. 

Senescent B. gymnorrhiza leaves experienced more incidences of herbivory than 

senescent leaves of the other two study species (Table 1, 2). Skov and Hartnoll (2002) found that 

senescent B. gymnorrhiza, R. mucronata, and C. tagal leaves had C:N ratios of 74, 109, and 184 

respectively.  In the present study incidences of senescent consumption parallel these C:N 

values. More senescent B. gymnorrhiza leaves were eaten than any other senescent leaf species. 

The carbon content for C. tagal leaves are more than 10x greater than the Russel-Hunter value, 

this may explain why herbivory on these leaves was completely absent. They are not 

nutritionally justifiable.  

 Nitrogen content is not the only component determining leaf palatability. Chen & Ye 

(2008) found that other factors influencing leaf palatability include: tannins, crude fibers, and 

water content. In their study the authors found that, in addition to C:N ratios, crude fiber content 

was negatively correlated with species specific feeding of mature green leaves. The high 

herbivory rates for aged leaves are ascribed to decreased tannin content and increased water 

content. Similarly, Emmerson and Ndeze (2007) found that water content may explain 

differential consumption rates in their species preference experiments. The arboreal sesarmid 

Parasesarma leptosoma grazed extensively on R. mucronata, marginally on B. gymnorrhiza and 

not at all on A. marina. The water content of grazed species was higher than in A. marina. These 

authors identified differences in leaf physiology as possible factors determining leaf palatability. 

Both R. mucronata and B. gymnorrhiza are salt excluders and release salt through their roots. 

Avicennia marina is a salt secretor and regulates internal sodium levels by expelling salt through 

pores in the leaves. The leaves of the salt excluders were also found to be thicker and more 

succulent, whereas A. marina leaves are small and tough. 

 These findings may help elucidate the reasons behind preferential herbivory observed in 

the present study. The mangroves leaves used to examine herbivory are analogous to the species 
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of Emmerson and Ndeze (2007). Not only are C. tagal leaves small and leathery, but like A. 

marina, it is a salt secretor as well. Low water content and high salinity may explain the lack of 

herbivory observed in the leaves of C. tagal. Moreover, tree-climbing crabs were found grazing 

more often on R. mucronata than B. gymnorrhiza trees. This may be explained by higher total 

nitrogen for R. mucronata (3.1% per leaf) than B. gymnorrhiza (2.95% per leaf) (emmerson & 

Ndeze, 2007). Erickson et al. (2003) found that the Rhizophora congener R. mangle was 

preferred over Avicennia germinans, and Laguncularia racemosa in American mangrove forests.  

The corresponding results from Pete and JCBNP mangroves fit previous studies in which 

Rhizophora spp. were found to be subjects of selective consumption. Green R. mucronata leaves 

were fed upon more than any other leaf category (Figure 1; Table1, 2). Almost half (49%) of the 

experimentally added green R. mucronata leaves at Jozani showed signs of crab herbivory. 

Amount of consumed material is also greater for R. mucronata (Table 2). Data from both sites 

shows that 13% of added leaves experienced Level II consumption (Figure 1). Even though crab 

activity was less at Pete, 10% of green R. mucronata leaves observed had visible crab damage. 

 

5.3 Alternative Sources of Sustenance 

 The research on mangrove crab feeding ecology is unequivocal; the litter layer is a major 

food source for many Sesarmids and Ocyopodids. Yet most studies have concluded that 

mangrove leaves are of low nutritive value due to a disproportionately high C:N ratio. Crabs do 

not rely completely on leaf litter as a food source. In the present study observed crabs spent more 

time foraging on unseen particles in the sediment than consuming experimentally added leaves. 

Field studies in Zanzibar report that in 76% of Neosemartium meinerti observations and in 66% 

of S. guttatum observations crabs were engaged in sediment feeding activities (Skov and 

Hartnoll, 2002). Similarly, Ya et al. (2008) found that in Singapore Perisesarma eumolpe and P. 

indiarum spent more time grazing than feeding on mangrove leaves. Crabs egest only 60% of 

consumed leaf litter and faeces tend to have lower C:N ratios than leaves. It was therefore 

hypothesized that crabs may feed on mud enriched by decaying mangrove faecal matter (Lee, 

1993). Instead, research has shown that in order to fulfill nitrogen requirements crabs likely feed 

on meiofauna found within the sediment. Bacteria, microalgae, epifauna and animal remains 

scraped from the top few millimeters of sediment likely provide supplemental nitrogen for 

Mangrove crabs (Lee, 1998). Gut analyses of Sesarmid crabs have found remnants of small 
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microinvertebrates (I.E. planktonic organisms, larvae, amphipods), parts of fish and other 

crustaceans (Erickson et al., 2003; Thongtham & Kristensen, 2005). At the JCBNP site a dark 

green covering of algae was often seen covering piles of crab pellets. Algae has 10x higher 

nitrogen content (C:N 7-10) than mangrove litter (C:N 30-100) and therefore may make up a 

major source of N for mangrove ecosystems (Nordhaus & Wolff, 2007; Kristensen, 2008). The 

digestion processes of crabs can change the physical and chemical conditions of mangrove leaf 

litter. These changes enhance the nutritional qualities of faecal matter and promote coprophagous 

benthic invertebrates and microphytobenthos (Cannicci et al, 2007). Though faeces may not 

contribute directly to crab nutrition, the continuous egestion of leaf matter promotes 

coprophagous food chains and habitats within the sediment that may supply mangrove crabs with 

other sources of sustenance.  

 

5.4 Sediment Composition and Sesarmid Crabs 

 Mangrove sediment is at once the provider and product of crab consumption. Through the 

retention and integration of leaf litter a structurally heterogenous sediment is generated that is 

both habitat and source of trophic interaction. Bacteria populations are ~70x more abundant in 

sediments with crab faecal matter (Cannicci et al., 2007). These bacteria are primarily 

responsible for the degradation of leaf litter. The brown decaying leaves preferred by mangrove 

crabs are the product of such microbial decomposition. Haphazard litter handling, resulting in 

microscopic leaf fragments, provides an ideal substrate for additional microbial colonization. In 

the present study 24% of consumed leaves were absent. Leaf burial ensures the incorporation of 

nutrients into mangrove soil and as the leaf ages microbial activity is promoted. Crab burrows 

also influence sediment quality by assisting in gas and solute exchange. The burrows of 

Sesarmids are labyrinthine cavities capable of increasing soil surface area by 150-380% 

(Kristensen, 2008). Excavated soil has increased aeration and allows water to percolate through 

the sediment thus permitting chemical exchange. Litter consumption contributes to the formation 

of soil habitats that, through detrital trophic processes and bioturbation, sustain the source of 

litter productivity. Moreover, mangrove crabs create a structurally and chemically heterogenous 

habitat by making leaf material available to benthic organisms through maceration, digestion, 

and burial. 
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5.5 Implications for Reforestation Regimes 

 The ecosystem effects of Sesarmids must not be overlooked when considering mangrove 

conservation. In Tanzania, over 20% of the population lives within the coastal regions (Silima et 

al., 2008). The mangrove ecosystems in these areas are subject to increasing pressure from 

human activities. The indiscriminate cutting of mangroves for fuel, timber and other uses has 

decimated natural stands surrounding many coastal communities. Mangrove extraction can result 

in physical and biological changes to a site, such as increased sediment salinity, high insolation, 

loss of nutrients and disruption of critical species interactions.  An objective driving mangrove 

reforestation efforts is wood production for timber, poles, and fuel. Most mangrove reforestation 

projects have involved planting single species that are of higher cash-crop value, culturally 

significant and/or are easier to plant (Kirui et al., 2007). Restoration efforts tend to focus on 

silviculture, that is the processes of establishing and growing of trees, and overlook the 

implications of disrupted species interactions. As a result replanted forests often suffer from 

incomplete ecosystem functioning. 

 In the Pete region Ceriops tagal are the most cut species comprising 48.2% of all 

observed stumps (Othman, 2005). Throughout Zanzibar this species is targeted for harvesting 

because of its strong wood and good fuel production. At the Pete study site, replanting C. tagal 

was happening on a minor scale. Most seedlings were found on silty-clay mud in open areas; and 

none measured more than 1 m in height. Although this species is socio-economically important, 

in light of the present findings concerning selective litter herbivory and the related soil 

generating processes C. tagal may not be the most appropriate candidate for replanting if 

restoring ecosystem functionality is intended. 

 The findings of the present study may aid in the construction of holistic reforestation 

regimes. The majority of biological activity in mangroves occurs at the benthic level. The 

detrivory of Sesarmids, and those organisms supported by crab activity, drive the formation of a 

highly productive sediment. Establishing these fundamental species interactions is therefore 

necessary for the creation of a viable soil capable of supporting both trees and attendant 

organisms. Incorporating an understanding of preferential feeding ecology into restoration 

projects may assist in promoting the succession of absent Sesarmids and the return of contingent 

ecosystem functions.  

 By planting preferred mangrove species it may be possible to reinforce Sesarmid 
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recolonization. Stands of R. mucronata are likely to engender healthy crab populations for a 

number of reasons. Literature has shown that Rhizophora spp. are palatable due to their water 

content, lack of crude fiber, and, relative to C. tagal and B. gymnorrhiza, superior total C:N 

content. Possibly of greater significance when considering palatability is the decreased salt levels 

found in R. mucronata leaves. This factor may also play an important role in sediment 

generation. Preferential feeding would entail greater incorporation, and therefore higher 

proportion of R. mucronata material in the soil. Kirui et al. (2007) found that in Kenya soil 

salinity was negatively correlated with sapling establishment and survival. If leaves of the salt 

excluder R. mucronata are the primary component of the benthic substrate, as opposed to a salt 

rich C. tagal leaves, propagule succession may be favored. Additionally, R. mucronata leaves 

not subject to any crab herbivory may contribute to the formation of soil more than other 

sampled species. Woitchik et al. (1997) found that over decomposition periods of 50 days during 

the rainy season in Kenya R. mucronata leaves lost 98% of their mass, whereas C. tagal lost 69% 

mass. Even without the modifying influence of Sesarmids, R. mucronata detritus will aid in the 

recovery of functional sediment. 

 The contributions of B. gymnorrhiza litter should not be overlooked. Within the senescent 

leaves observed, these leaves were fed on more than the other two test species. Much of the litter 

in the Jozani study site was senescent B. gymnorrhiza leaves. It should be noted that young trees 

and seedlings are likely produce less senescent leaves, and so their ability to supply matter for 

soil generation will not occur until later in their life cycle. Nevertheless, R. mucronata and B. 

gymnorrhiza are the candidate species best suited to produce litter material that is selectively fed 

upon and therefore prone to the formation of favorable benthic conditions. Utilizing the findings 

on selective feeding offered here it becomes possible to construct reforestation schemes that 

promote the recolonization of crabs, and the subsequent reinstatement of their engineering 

effects. 

 

6.0 CONCLUSION 

 This study has shown that crab activity, as measured by their herbivory on leaves, is less 

in the disturbed mangroves of Pete. The amount of leaf material consumed was dependent on the 

leaf age and leaf species. Crabs fed less on senescent yellow leaves than green leaves. There is 

an apparent preference of Sesarmid crabs for the green leaves of R. mucronata. Future 
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reforestation efforts may want to consider this species as a primary candidate for reinforcing crab 

populations. The predilection of Sesarmids for R. mucronata leaves may be exploited to 

accelerate the generation of favorable sediment capable of supporting benthic communities and 

corresponding mangrove species. Together these elements may facilitate the approach of this 

vital ecosystem to natural conditions. 

 

7.0 RECOMMENDATIONS 

 It may be interesting to focus directly on soil characteristics within the mangrove. 

Comparing the carbon and nitrogen quotients in areas with different levels of disturbance may 

shed light on litter processing dynamics. By comparing carbon signatures of the different leaves 

it may be possible to determine which mangroves species contribute more to sediment 

composition and quality. Doing laboratory experiments that show decreased salinity levels in R. 

mucronata or B. gymnorrhiza (the excluders) based soil versus C. tagal and A. marina (the 

secretors) based soil would elucidate the affects specific trees have on their sediment. Certainly 

more work could be done on the feeding ecology of Sesarmid crabs. Although not statistically 

significant, crabs seemed to eat more during spring tides. This may be due to daily tidal flow 

creating a feeding impetus. However, during field observations I noticed that during neap tides, 

when the Jozani area did not become inundated, sediment algal cover became more noticeable. 

Whether or not there was more due to long exposure, I don’t know. But a surfeit of algae may 

affect how heavily crabs feed on the litter layer. Based on the findings presented here and the 

voluminous literature on mangrove ecology it may be possible to develop site-specific 

reforestation regimes. Before even considering replanting trees with feeding preference in mind 

it is first necessary to evaluate the site. Considerations of tidal regimes, salinity, zonation and 

coastal activity will all play vital roles in determining proper areas for reforestation. Then one 

can worry about which trees to plant to reinforce crab populations. Further work evaluating 

optimal sites for reinstating crab-based ecosystems would be ideal.  
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APPENDICES 

Appendix 1.Map of Unguja Island showing mangrove areas and study sites 
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Appendix 2a. Jozani site herbivory counts for C. tagal 
JOZANI TRANSECT Plot Leaves 0 1 2 3 4 5 
7/11/2009 1 A CT (g) 5 

CT (y) 5 
B CT (g) 4 1 

CT (y) 5 
C CT (g) 5 

CT (y) 5 
D CT (g) 4 1 

CT (y) 5 
E CT (g) 5 

CT (y) 5 
2 A CT (g) 5 

CT (y) 3 2 
B CT (g) 5 

CT (y) 5 
C CT (g) 5 

CT (y) 5 
D CT (g) 5 

CT (y) 5 
E CT (g) 5 

CT (y) 5 
Sum 96 0 1 0 0 3 
Mean 4.8 ### 1 ### ## 1.5 

% 96 0 1 0 0 3 
Sum(g) 48 0 1 0 0 1 
Sum(y) 48 0 0 0 0 2 
Mean(g) 4.8 ### 1 ### ## 1 
Mean(y) 4.8 ### ### ### ## 2 

%(g) 96 0 2 0 0 2 
%(y) 96 0 0 0 0 4 

8/11/2009 1 A CT (g) 5 
CT (y) 5 

B CT (g) 4 1 
CT (y) 5 

C CT (g) 3 1 1 
CT (y) 5 

D CT (g) 3 2 
CT (y) 5 

E CT (g) 3 2 
CT (y) 5 

2 A CT (g) 3 1 1 
CT (y) 5 

B CT (g) 5 
CT (y) 5 

C CT (g) 5 
CT (y) 5 

D CT (g) 5 
CT (y) 5 
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E CT (g) 5 
CT (y) 5 
Sum 91 7 1 0 0 1 
Mean 4.55 1.4 1 ### ## 1 

% 91 7 1 0 0 1 
Sum(g) 41 7 1 0 0 1 
Sum(y) 50 0 0 0 0 0 
Mean(g) 4.1 1.4 1 ### ## 1 
Mean(y) 5 ### ### ### ## ### 

%(g) 82 14 2 0 0 2 
%(y) 100 0 0 0 0 0 

9/11/2009 1 A CT (g) 5 
CT (y) 5 

B CT (g) 2 1 2 
CT (y) 5 

C CT (g) 5 
CT (y) 5 

D CT (g) 4 1 
CT (y) 5 

E CT (g) 5 
CT (y) 5 

2 A CT (g) 5 
CT (y) 5 

B CT (g) 5 
CT (y) 5 

C CT (g) 5 
CT (y) 5 

D CT (g) 5 
CT (y) 5 

E CT (g) 5 
CT (y) 5 
Sum 96 1 1 0 0 2 
Mean 4.8 1 1 ### ## 2 

% 96 1 1 0 0 2 
Sum(g) 46 1 1 0 0 2 
Sum(y) 50 0 0 0 0 0 
Mean(g) 4.6 1 1 ### ## 2 
Mean(y) 5 ### ### ### ## ### 

%(g) 92 2 2 0 0 4 
%(y) 100 0 0 0 0 0 

 10-11-09 1 A CT (g) 5 
CT (y) 5 

B CT (g) 4 1 
CT (y) 4 1 

C CT (g) 5 
CT (y) 5 

D CT (g) 3 1 1 
CT (y) 5 
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E CT (g) 4 1 
CT (y) 5 

2 A CT (g) 5 
CT (y) 5 

B CT (g) 5 
CT (y) 5 

C CT (g) 4 1 
CT (y) 5 

D CT (g) 2 3 
CT (y) 5 

E CT (g) 5 
CT (y) 5 
Sum 91 3 0 0 0 6 
Mean 4.55 1 ### ### ## 1.5 

% 91 3 0 0 0 6 
Sum(g) 42 3 0 0 0 5 
Sum(y) 49 0 0 0 0 1 
Mean(g) 4.2 1 ### ### ## 1.67 
Mean(y) 4.9 ### ### ### ## 1 

%(g) 84 6 0 0 0 10 
%(y) 98 0 0 0 0 2 

11/11/2009 1 A CT (g) 5 
CT (y) 5 

B CT (g) 5 
CT (y) 5 

C CT (g) 5 
CT (y) 5 

D CT (g) 5 
CT (y) 4 1 

E CT (g) 4 1 
CT (y) 4 1 

2 A CT (g) 5 
CT (y) 4 1 

B CT (g) 5 
CT (y) 5 

C CT (g) 5 
CT (y) 5 

D CT (g) 5 
CT (y) 5 

E CT (g) 4 1 
CT (y) 5 
Sum 95 1 0 0 1 3 
Mean 4.75 1 ### ### 1 1 

% 95 1 0 0 1 3 
Sum(g) 48 1 0 0 1 0 
Sum(y) 47 0 0 0 0 3 
Mean(g) 4.8 1 ### ### 1 ### 
Mean(y) 4.7 ### ### ### ## 1 

%(g) 96 2 0 0 2 0 
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%(y) 94 0 0 0 0 6 

Overall 
Means Sum 469 12 3 0 1 15 

  Mean 4.69 ### ### ### ## 1.4 
  % 93.8 2.4 0.6 0 0.2 3 
  Sum(g) 225 12 3 0 1 9 
  Sum(y) 244 0 0 0 0 6 
  Mean(g) 4.5 ### ### ### ## ### 
  Mean(y) 4.88 ### ### ### ## ### 
  %(g) 90 4.8 1.2 0 0.4 3.6 
  %(y) 97.6 0 0 0 0 2.4 
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Appendix 2b. Jozani site herbivory counts for R. mucronata 
JOZANI TRANSECT Plot 0 1 2 3 4 5 
7/11/2009 1 A RM (g) 1 3 1 

RM (y) 4 1 
B RM (g) 2 3 

RM (y) 5 
C RM (g) 1 1 2 1 

RM (y) 5 
D RM (g) 1 2 2 

RM (y) 5 
E RM (g) 1 3 1 

RM (y) 3 2 
2 A RM (g) 1 2 1 1 

RM (y) 5 
B RM (g) 1 3 1 

RM (y) 5 
C RM (g) 2 3 

RM (y) 5 
D RM (g) 1 2 2 

RM (y) 4 1 
E RM (g) 2 1 1 1 

RM (y) 5 
Sum 55 23 10 2 3 7 
Mean 3.056 2.09 2 1 1 1.4 

% 55 23 10 2 3 7 
Sum(g) 9 20 10 1 3 7 
Sum(y) 46 3 0 1 0 0 
Mean(g) 1.125 2.22 2 1 1 1.4 
Mean(y) 4.6 1.5 ### 1 ## ## 

%(g) 18 40 20 2 6 14 
%(y) 92 6 0 2 0 0 

8/11/2009 1 A RM (g) 3 2 
RM (y) 5 

B RM (g) 4 1 
RM (y) 5 

C RM (g) 3 2 
RM (y) 4 1 

D RM (g) 2 1 1 1 
RM (y) 5 

E RM (g) 2 3 
RM (y) 5 

2 A RM (g) 3 2 
RM (y) 5 

B RM (g) 3 2 
RM (y) 5 

C RM (g) 4 1 
RM (y) 4 1 

D RM (g) 1 1 1 1 1 
RM (y) 5 
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E RM (g) 1 3 1 
RM (y) 5 

Sum 67 18 10 3 0 2 
Mean 3.941 1.8 1.7 1 ## 1 

% 67 18 10 3 0 2 
Sum(g) 19 17 9 3 0 2 
Sum(y) 48 1 1 0 0 0 
Mean(g) 2.714 1.89 1.8 1 ## 1 
Mean(y) 4.8 1 1 ### ## ## 

%(g) 38 34 18 6 0 4 
%(y) 96 2 2 0 0 0 

9/11/2009 1 A RM (g) 4 1 
RM (y) 5 

B RM (g) 5 
RM (y) 5 

C RM (g) 3 1 1 
RM (y) 5 

D RM (g) 3 1 1 
RM (y) 2 2 1 

E RM (g) 1 4 
RM (y) 4 1 

2 A RM (g) 3 1 1 
RM (y) 5 

B RM (g) 3 2 
RM (y) 5 

C RM (g) 3 1 1 
RM (y) 5 

D RM (g) 1 1 3 
RM (y) 5 

E RM (g) 2 2 1 
RM (y) 5 

Sum 73 14 7 1 0 5 
Mean 3.842 1.56 1.2 1 ## 1.7 

% 73 14 7 1 0 5 
Sum(g) 27 13 5 1 0 4 
Sum(y) 46 1 2 0 0 1 
Mean(g) 3 1.63 1 1 ## 2 
Mean(y) 4.6 1 2 ### ## 1 

%(g) 54 26 10 2 0 8 
%(y) 92 2 4 0 0 2 

 10-11-09 1 A RM (g) 2 3 
RM (y) 5 

B RM (g) 2 3 
RM (y) 5 

C RM (g) 2 2 1 
RM (y) 5 

D RM (g) 3 2 
RM (y) 5 
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E RM (g) 1 2 2 
RM (y) 5 

2 A RM (g) 2 1 2 
RM (y) 5 

B RM (g) 3 1 1 
RM (y) 5 

C RM (g) 2 2 1 
RM (y) 5 

D RM (g) 2 1 1 1 
RM (y) 5 

E RM (g) 1 1 1 2 
RM (y) 5 

Sum 69 18 7 1 1 4 
Mean 3.632 1.8 1.4 1 1 1.3 

% 69 18 7 1 1 4 
Sum(g) 19 18 7 1 1 4 
Sum(y) 50 0 0 0 0 0 
Mean(g) 2.111 1.8 1.4 1 1 1.3 
Mean(y) 5 ### ### ### ## ## 

%(g) 38 36 14 2 2 8 
%(y) 100 0 0 0 0 0 

11/11/2009 1 A RM (g) 5 
RM (y) 5 

B RM (g) 4 1 
RM (y) 5 

C RM (g) 4 1 
RM (y) 5 

D RM (g) 4 1 
RM (y) 5 

E RM (g) 2 2 1 
RM (y) 3 2 

2 A RM (g) 4 1 
RM (y) 5 

B RM (g) 4 1 
RM (y) 5 

C RM (g) 5 
RM (y) 5 

D RM (g) 2 3 
RM (y) 5 

E RM (g) 2 2 1 
RM (y) 5 

Sum 84 11 0 1 0 4 
Mean 4.2 1.57 ### 1 ## 1.3 

% 84 11 0 1 0 4 
Sum(g) 36 11 0 1 0 2 
Sum(y) 48 0 0 0 0 2 
Mean(g) 3.6 1.57 ### 1 ## 1 
Mean(y) 4.8 ### ### ### ## 2 

%(g) 72 22 0 2 0 4 
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%(y) 96 0 0 0 0 4 

Overall 
Means Sum 348 84 34 8 4 22 

  Mean 3.734 1.76 ### 1 ## 1.3 
  % 69.6 16.8 6.8 1.6 0.8 4.4 
  Sum(g) 110 79 31 7 4 19 
  Sum(y) 238 5 3 1 0 3 
  Mean(g) 2.51 1.82 ### 1 ## 1.3 
  Mean(y) 4.76 ### ### ### ## ## 
  %(g) 44 31.6 12 2.8 1.6 7.6 
  %(y) 95.2 2 1.2 0.4 0 1.2 
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Appendix 2c. Jozani site herbivory counts for B. gymnorrhiza 
JOZANI TRANSECT Plot 0 1 2 3 4 5 
7/11/2009 1 A BG (g) 4 1 

BG (Y) 3 1 1 
B BG (g) 1 1 2 1 

BG (Y) 5 
C BG (g) 4 1 

BG (Y) 3 1 1 
D BG (g) 4 1 

BG (Y) 5 
E BG (g) 3 1 1 

BG (Y) 3 1 1 
2 A BG (g) 4 1 

BG (Y) 5 
B BG (g) 2 2 1 

BG (Y) 5 
C BG (g) 1 2 1 1 

BG (Y) 5 
D BG (g) 3 2 

BG (Y) 3 1 1 
E BG (g) 4 1 

BG (Y) 4 1 
Sum 71 12 9 2 0 6 
Mean 3.6 1.2 1.1 1 ## 1.2 

% 71 12 9 2 0 6 
Sum(g) 30 8 7 1 0 4 
Sum(y) 41 4 2 1 0 2 
Mean(g) 2.7 1.1 1 0.5 0 1 
Mean(y) 3.7 0.8 0.7 0.5 0 0.7 

%(g) 60 16 14 2 0 8 
%(y) 82 8 4 2 0 4 

8/11/2009 1 A BG (g) 4 1 
BG (Y) 5 

B BG (g) 4 1 
BG (Y) 5 

C BG (g) 3 1 1 
BG (Y) 5 

D BG (g) 5 
BG (Y) 5 

E BG (g) 5 
BG (Y) 3 1 1 

2 A BG (g) 2 3 
BG (Y) 4 1 

B BG (g) 5 
BG (Y) 4 1 

C BG (g) 5 
BG (Y) 5 

D BG (g) 5 
BG (Y) 4 1 
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E BG (g) 3 2 
BG (Y) 4 1 

Sum 85 10 4 0 0 1 
Mean 4.3 1.4 1 ## ## 1 

% 85 10 4 0 0 1 
Sum(g) 41 7 2 0 0 0 
Sum(y) 44 3 2 0 0 1 
Mean(g) 3.7 1.4 0.7 0 0 0 
Mean(y) 4 0.8 0.7 0 0 0.5 

%(g) 82 14 4 0 0 0 
%(y) 88 6 4 0 0 2 

9/11/2009 1 A BG (g) 5 
BG (Y) 4 1 

B BG (g) 5 
BG (Y) 4 1 

C BG (g) 5 
BG (Y) 3 1 1 

D BG (g) 5 
BG (Y) 3 2 

E BG (g) 4 1 
BG (Y) 2 1 2 

2 A BG (g) 5 
BG (Y) 5 

B BG (g) 5 
BG (Y) 5 

C BG (g) 5 
BG (Y) 5 

D BG (g) 5 
BG (Y) 3 1 1 

E BG (g) 3 2 
BG (Y) 4 1 

Sum 85 6 1 0 1 7 
Mean 4.3 1.2 1 ## 1 1.4 

% 85 6 1 0 1 7 
Sum(g) 47 0 0 0 0 3 
Sum(y) 38 6 1 0 1 4 
Mean(g) 4.3 0 0 0 0 1 
Mean(y) 3.5 1 0.5 0 1 1 

%(g) 94 0 0 0 0 6 
%(y) 76 12 2 0 2 8 

 10-11-09 1 A BG (g) 5 
BG (Y) 4 1 

B BG (g) 5 
BG (Y) 4 1 

C BG (g) 5 
BG (Y) 5 

D BG (g) 5 
BG (Y) 5 



33 
 

E BG (g) 5 
BG (Y) 3 2 

2 A BG (g) 4 1 
BG (Y) 5 

B BG (g) 4 1 
BG (Y) 5 

C BG (g) 4 1 
BG (Y) 5 

D BG (g) 4 1 
BG (Y) 4 1 

E BG (g) 3 2 
BG (Y) 5 

Sum 89 6 0 0 0 5 
Mean 4.5 1.2 ## ## ## 1.3 

% 89 6 0 0 0 5 
Sum(g) 44 2 0 0 0 4 
Sum(y) 45 4 0 0 0 1 
Mean(g) 4 0.7 0 0 0 1 
Mean(y) 4.1 1 0 0 0 0.5 

%(g) 88 4 0 0 0 8 
%(y) 90 8 0 0 0 2 

11/11/2009 1 A BG (g) 4 1 
BG (Y) 4 1 

B BG (g) 5 
BG (Y) 4 1 

C BG (g) 5 
BG (Y) 5 

D BG (g) 5 
BG (Y) 4 1 

E BG (g) 5 
BG (Y) 5 

2 A BG (g) 4 1 
BG (Y) 4 1 

B BG (g) 4 1 
BG (Y) 4 1 

C BG (g) 4 1 
BG (Y) 5 

D BG (g) 3 2 
BG (Y) 5 

E BG (g) 4 1 
BG (Y) 3 2 

Sum 86 8 2 0 0 4 
Mean 4.3 1.1 1 ## ## 1.3 

% 86 8 2 0 0 4 
Sum(g) 43 5 1 0 0 1 
Sum(y) 43 3 1 0 0 3 
Mean(g) 3.9 1 0.5 0 0 0.5 
Mean(y) 3.9 0.8 0.5 0 0 1 

%(g) 86 10 2 0 0 2 
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%(y) 86 6 2 0 0 6 

Overall 
Means Sum 416 42 16 2 1 23 

  Mean 4.2 1.2 ## ## ## 1.2 
  % 83 8.4 3.2 0.4 0 4.6 
  Sum(g) 205 22 10 1 0 12 
  Sum(y) 211 20 6 1 1 11 
  Mean(g) 3.7 0.8 0.4 0.1 0 0.7 
  Mean(y) 3.8 0.9 0.5 0.1 0 0.7 
  %(g) 82 8.8 4 0.4 0 4.8 
  %(y) 84 8 2.4 0.4 0 4.4 
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Appendix 3a. Pete site herbivory counts for C. tagal 
PETE TRANSECT Plot Leaves 0 1 2 3 4 5 
13-11-09 1 A CT (g) 5 

CT (y) 5 
B CT (g) 5 

CT (y) 5 
C CT (g) 5 

CT (y) 5 
D CT (g) 5 

CT (y) 5 
E CT (g) 5 

CT (y) 5 
2 A CT (g) 5 

CT (y) 5 
B CT (g) 5 

CT (y) 5 
C CT (g) 5 

CT (y) 5 
D CT (g) 5 

CT (y) 5 
E CT (g) 5 

CT (y) 5 
Sum 100 0 0 0 0 0 
Mean 5 ## ## ## ## ## 

% 100 0 0 0 0 0 
Sum(g) 50 0 0 0 0 0 
Sum(y) 50 0 0 0 0 0 
Mean(g) 5 ## ## ## ## ## 
Mean(y) 5 ## ## ## ## ## 

%(g) 100 0 0 0 0 0 
%(y) 100 0 0 0 0 0 

14-11-09 1 A CT (g) 5 
CT (y) 5 

B CT (g) 3 2 
CT (y) 5 

C CT (g) 5 
CT (y) 5 

D CT (g) 5 
CT (y) 5 

E CT (g) 5 
CT (y) 5 

2 A CT (g) 5 
CT (y) 5 

B CT (g) 5 
CT (y) 5 

C CT (g) 5 
CT (y) 5 

D CT (g) 5 
CT (y) 5 
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E CT (g) 5 
CT (y) 5 

Sum 98 2 0 0 0 0 
Mean 4.9 2 ## ## ## ## 

% 98 2 0 0 0 0 
Sum(g) 48 2 0 0 0 0 
Sum(y) 50 0 0 0 0 0 
Mean(g) 4.8 2 ## ## ## ## 
Mean(y) 5 ## ## ## ## ## 

%(g) 96 4 0 0 0 0 
%(y) 100 0 0 0 0 0 

15-11-09 1 A CT (g) 5 
CT (y) 5 

B CT (g) 5 
CT (y) 5 

C CT (g) 5 
CT (y) 5 

D CT (g) 4 1 
CT (y) 5 

E CT (g) 5 
CT (y) 5 

2 A CT (g) 5 
CT (y) 5 

B CT (g) 5 
CT (y) 5 

C CT (g) 5 
CT (y) 5 

D CT (g) 5 
CT (y) 5 

E CT (g) 5 
CT (y) 5 

Sum 99 1 0 0 0 0 
Mean 5 1 ## ## ## ## 

% 99 1 0 0 0 0 
Sum(g) 49 1 0 0 0 0 
Sum(y) 50 0 0 0 0 0 
Mean(g) 4.9 1 ## ## ## ## 
Mean(y) 5 ## ## ## ## ## 

%(g) 98 2 0 0 0 0 
%(y) 100 0 0 0 0 0 

16-11-09  1 A CT (g) 5 
CT (y) 5 

B CT (g) 5 
CT (y) 5 

C CT (g) 5 
CT (y) 5 

D CT (g) 5 
CT (y) 5 
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E CT (g) 5 
CT (y) 5 

2 A CT (g) 5 
CT (y) 5 

B CT (g) 3 2 
CT (y) 5 

C CT (g) 5 
CT (y) 5 

D CT (g) 5 
CT (y) 5 

E CT (g) 4 1 
CT (y) 5 

Sum 97 1 0 0 0 2 
Mean 4.9 1 ## ## ## 2 

% 97 1 0 0 0 2 
Sum(g) 47 1 0 0 0 2 
Sum(y) 50 0 0 0 0 0 
Mean(g) 4.7 1 ## ## ## 2 
Mean(y) 5 ## ## ## ## ## 

%(g) 94 2 0 0 0 4 
%(y) 100 0 0 0 0 0 

17-11-09  1 A CT (g) 5 
CT (y) 5 

B CT (g) 5 
CT (y) 5 

C CT (g) 2 3 
CT (y) 5 

D CT (g) 5 
CT (y) 5 

E CT (g) 5 
CT (y) 5 

2 A CT (g) 5 
CT (y) 5 

B CT (g) 5 
CT (y) 5 

C CT (g) 5 
CT (y) 5 

D CT (g) 4 1 
CT (y) 5 

E CT (g) 5 
CT (y) 5 

Sum 96 0 0 0 0 4 
Mean 4.8 ## ## ## ## 2 

% 96 0 0 0 0 4 
Sum(g) 46 0 0 0 0 4 
Sum(y) 50 0 0 0 0 0 
Mean(g) 4.6 ## ## ## ## 2 
Mean(y) 5 ## ## ## ## ## 

%(g) 92 0 0 0 0 8 
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%(y) 100 0 0 0 0 0 

Overall 
Means Sum 490 4 0 0 0 6 
  Mean 4.9 ## ## ## ## ## 
  % 98 0.8 0 0 0 1.2 
  Sum(g) 240 4 0 0 0 6 
  Sum(y) 250 0 0 0 0 0 
  Mean(g) 4.8 ## ## ## ## ## 
  Mean(y) 5 ## ## ## ## ## 
  %(g) 96 1.6 0 0 0 2.4 
  %(y) 100 0 0 0 0 0 

 



39 
 

Appendix 3b. Pete site herbivory counts for R. mucronata 
PETE TRANSECT Plot Leaves 
13-11-09  1 A RM (g) 5 

RM (y) 5 
B RM (g) 5 

RM (y) 5 
C RM (g) 5 

RM (y) 5 
D RM (g) 5 

RM (y) 5 
E RM (g) 3 2 

RM (y) 5 
2 A RM (g) 5 

RM (y) 5 
B RM (g) 5 

RM (y) 5 
C RM (g) 4 1 

RM (y) 5 
D RM (g) 5 

RM (y) 5 
E RM (g) 5 

RM (y) 5 
Sum 97 2 0 0 0 1 
Mean 4.9 2 ## ## ## 1 

% 97 2 0 0 0 1 
Sum(g) 47 2 0 0 0 1 
Sum(y) 50 0 0 0 0 0 
Mean(g) 4.7 2 ## ## ## 1 
Mean(y) 5 ## ## ## ## ## 

%(g) 94 4 0 0 0 2 
%(y) 100 0 0 0 0 0 

14-11-09 1 A RM (g) 5 
RM (y) 5 

B RM (g) 5 
RM (y) 4 1 

C RM (g) 5 
RM (y) 5 

D RM (g) 2 1 1 1 
RM (y) 4 1 

E RM (g) 2 2 1 
RM (y) 5 

2 A RM (g) 5 
RM (y) 5 

B RM (g) 5 
RM (y) 5 

C RM (g) 5 
RM (y) 5 

D RM (g) 5 
RM (y) 5 
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E RM (g) 5 
RM (y) 5 

Sum 92 5 2 0 0 1 
Mean 4.6 1.3 1 ## ## 1 

% 92 5 2 0 0 1 
Sum(g) 44 3 2 0 0 1 
Sum(y) 48 2 0 0 0 0 
Mean(g) 4.4 1.5 1 ## ## 1 
Mean(y) 4.8 1 ## ## ## ## 

%(g) 88 6 4 0 0 2 
%(y) 96 4 0 0 0 0 

15-11-09 1 A RM (g) 5 
RM (y) 5 

B RM (g) 5 
RM (y) 5 

C RM (g) 2 3 
RM (y) 5 

D RM (g) 1 2 2 
RM (y) 5 

E RM (g) 5 
RM (y) 5 

2 A RM (g) 0 1 4 
RM (y) 5 

B RM (g) 5 
RM (y) 5 

C RM (g) 5 
RM (y) 5 

D RM (g) 3 2 
RM (y) 5 

E RM (g) 4 1 
RM (y) 5 

Sum 85 9 2 0 0 4 
Mean 4.3 1.8 2 ## ## 4 

% 85 9 2 0 0 4 
Sum(g) 35 9 2 0 0 4 
Sum(y) 50 0 0 0 0 0 
Mean(g) 3.5 1.8 2 ## ## 4 
Mean(y) 5 ## ## ## ## ## 

%(g) 70 18 4 0 0 8 
%(y) 100 0 0 0 0 0 

16-11-09 1 A RM (g) 5 
RM (y) 5 

B RM (g) 5 
RM (y) 5 

C RM (g) 5 
RM (y) 4 1 

D RM (g) 4 1 
RM (y) 4 1 
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E RM (g) 5 
RM (y) 5 

2 A RM (g) 2 3 
RM (y) 5 

B RM (g) 5 
RM (y) 5 

C RM (g) 5 
RM (y) 5 

D RM (g) 4 1 
RM (y) 4 1 

E RM (g) 3 2 
RM (y) 5 

Sum 90 7 0 0 0 3 
Mean 4.5 1.2 ## ## ## 3 

% 90 7 0 0 0 3 
Sum(g) 43 4 0 0 0 3 
Sum(y) 47 3 0 0 0 0 
Mean(g) 4.3 1.3 ## ## ## 3 
Mean(y) 4.7 1 ## ## ## ## 

%(g) 86 8 0 0 0 6 
%(y) 94 6 0 0 0 0 

17-11-09 1 A RM (g) 5 
RM (y) 5 

B RM (g) 5 
RM (y) 5 

C RM (g) 2 3 
RM (y) 4 1 

D RM (g) 5 
RM (y) 5 

E RM (g) 5 
RM (y) 5 

2 A RM (g) 5 
RM (y) 4 1 

B RM (g) 4 1 
RM (y) 5 

C RM (g) 5 
RM (y) 5 

D RM (g) 5 
RM (y) 5 

E RM (g) 4 1 
RM (y) 5 

Sum 93 5 1 0 0 1 
Mean 4.7 1.7 1 ## ## 1 

% 93 5 1 0 0 1 
Sum(g) 45 4 0 0 0 1 
Sum(y) 48 1 1 0 0 0 
Mean(g) 4.5 2 ## ## ## 1 
Mean(y) 4.8 1 1 ## ## ## 

%(g) 90 8 0 0 0 2 
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%(y) 96 2 2 0 0 0 

Overall 
Means Sum 457 28 5 0 0 10 
  Mean 4.6 1.6 ## ## ## 2 
  % 91 5.6 1 0 0 2 
  Sum(g) 214 22 4 0 0 10 
  Sum(y) 243 6 1 0 0 0 
  Mean(g) 4.3 1.7 ## ## ## 2 
  Mean(y) 4.9 ## ## ## ## ## 
  %(g) 86 8.8 1.6 0 0 4 
  %(y) 97 2.4 0.4 0 0 0 
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Appendix 3c. Pete site herbivory counts for B. gymnorrhiza 
PETE TRANSECT Plot 0 1 2 3 4 5 
13-11-09  1 A BG (g) 5 

BG (Y) 5 
B BG (g) 4 1 

BG (Y) 4 1 
C BG (g) 5 

BG (Y) 5 
D BG (g) 5 

BG (Y) 5 
E BG (g) 4 1 

BG (Y) 5 
2 A BG (g) 5 

BG (Y) 5 
B BG (g) 5 

BG (Y) 5 
C BG (g) 5 

BG (Y) 5 
D BG (g) 5 

BG (Y) 5 
E BG (g) 5 

BG (Y) 5 
Sum 97 2 0 0 0 1 
Mean 4.9 1 ## ## ## 1 
% 97 2 0 0 0 1 
Sum(g) 48 1 0 0 0 1 
Sum(y) 49 1 0 0 0 0 
Mean(g) 4.8 1 ## ## ## 1 
Mean(y) 4.9 1 ## ## ## ## 
%(g) 96 2 0 0 0 2 
%(y) 98 2 0 0 0 0 

14-11-09  1 A BG (g) 5 
BG (Y) 5 

B BG (g) 5 
BG (Y) 5 

C BG (g) 5 
BG (Y) 5 

D BG (g) 5 
BG (Y) 5 

E BG (g) 5 
BG (Y) 5 

2 A BG (g) 5 
BG (Y) 5 

B BG (g) 5 
BG (Y) 5 

C BG (g) 5 
BG (Y) 5 

D BG (g) 5 
BG (Y) 4 1 
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E BG (g) 5 
BG (Y) 5 
Sum 99 1 0 0 0 0 
Mean 5 1 ## ## ## ## 
% 99 1 0 0 0 0 
Sum(g) 50 0 0 0 0 0 
Sum(y) 49 1 0 0 0 0 
Mean(g) 5 ## ## ## ## ## 
Mean(y) 4.9 1 ## ## ## ## 
%(g) 100 0 0 0 0 0 
%(y) 98 2 0 0 0 0 

15-11-09  1 A BG (g) 5 
BG (Y) 5 

B BG (g) 5 
BG (Y) 5 

C BG (g) 5 
BG (Y) 5 

D BG (g) 5 
BG (Y) 5 

E BG (g) 5 
BG (Y) 5 
RM (g) 0 1 4 
RM (y) 5 

B BG (g) 5 
BG (Y) 5 

C BG (g) 5 
BG (Y) 5 

D BG (g) 5 
BG (Y) 5 

E BG (g) 3 2 
BG (Y) 5 
Sum 93 1 0 0 0 6 
Mean 4.7 1 ## ## ## 3 
% 93 1 0 0 0 6 
Sum(g) 43 1 0 0 0 6 
Sum(y) 50 0 0 0 0 0 
Mean(g) 4.3 1 ## ## ## 3 
Mean(y) 5 ## ## ## ## ## 
%(g) 86 2 0 0 0 12 
%(y) 100 0 0 0 0 0 

16-11-09 1 A BG (g) 4 1 
BG (Y) 5 

B BG (g) 5 
BG (Y) 5 

C BG (g) 5 
BG (Y) 5 

D BG (g) 5 
BG (Y) 5 
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E BG (g) 5 
BG (Y) 5 

2 A BG (g) 2 3 
BG (Y) 2 3 

B BG (g) 5 
BG (Y) 4 1 

C BG (g) 5 
BG (Y) 5 

D BG (g) 5 
BG (Y) 5 

E BG (g) 5 
BG (Y) 5 
Sum 92 1 0 0 0 7 
Mean 4.6 1 ## ## ## 2.3 
% 92 1 0 0 0 7 
Sum(g) 46 1 0 0 0 3 
Sum(y) 46 0 0 0 0 4 
Mean(g) 4.6 1 ## ## ## 3 
Mean(y) 4.6 ## ## ## ## 2 
%(g) 92 2 0 0 0 6 
%(y) 92 0 0 0 0 8 

17-11-09  1 A BG (g) 5 
BG (Y) 5 

B BG (g) 5 
BG (Y) 5 

C BG (g) 3 2 
BG (Y) 5 

D BG (g) 4 1 
BG (Y) 3 2 

E BG (g) 5 
BG (Y) 5 

2 A BG (g) 4 1 
BG (Y) 5 

B BG (g) 5 
BG (Y) 5 

C BG (g) 5 
BG (Y) 5 

D BG (g) 5 
BG (Y) 5 

E BG (g) 4 1 
BG (Y) 4 1 
Sum 92 6 0 0 0 2 
Mean 4.6 1.5 ## ## ## 1 
% 92 6 0 0 0 2 
Sum(g) 45 4 0 0 0 1 
Sum(y) 47 2 0 0 0 1 
Mean(g) 4.5 1.3 ## ## ## 1 
Mean(y) 4.7 2 ## ## ## 1 
%(g) 90 8 0 0 0 2 
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%(y) 94 4 0 0 0 2 

Overall 
Means Sum 473 11 0 0 0 16 
  Mean 4.7 1.1 ## ## ## ## 
  % 95 2.2 0 0 0 3.2 
  Sum(g) 232 7 0 0 0 11 
  Sum(y) 241 4 0 0 0 5 
  Mean(g) 4.6 ## ## ## ## ## 
  Mean(y) 4.8 ## ## ## ## ## 
  %(g) 93 2.8 0 0 0 4.4 
  %(y) 96 1.6 0 0 0 2 
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