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Abstract 

 

 Climate change currently represents the most significant and increasing threat to coral 

reef ecosystems worldwide as sea surface temperatures are predicted to increase by up to 4
o
C by 

the year 2099.  Sponges that rely on strong microbial symbioses are particularly sensitive to 

elevations in seawater temperature.  In this study, the impacts of elevated seawater temperature 

on feeding behavior in the tropical marine sponge Rhopaloeides odorabile were assessed.  

Sponges were exposed to temperatures ranging between 27 and 32
o
C.  At four time points, 

filtration rate and volume flow rate of each sponge were measured, and feeding efficiencies on 

both heterotrophic and phototrophic bacteria were determined.  No differences in volume flow 

rate or feeding efficiencies on both bacterial types were detected in 27 and 30
o
C treatments.  In 

contrast, sponges exposed to 31
o
C exhibited significantly reduced volume flow rates and feeding 

efficiency on heterotrophic bacteria after 24 hours but maintained normal feeding efficiency on 

phototrophic bacteria through 3 days.  Sponges exposed to 32
o
C exhibited major cellular necrosis 

and dramatically reduced volume flow rates and feeding efficiencies on both bacterial types after 

24 hours.  The threshold for normal sponge feeding behavior was 31
o
C, and the shift in feeding 

efficiencies at 31
o
C is clear evidence of selective filtration of phototrophic bacteria by R. 

odorabile in response to thermal stress.  This thermal threshold is identical to the symbiosis 

threshold for corals and their zooxanthellae, indicating that sponges may be similarly threatened 

by climate change.                

Keywords: sponge; temperature; feeding; flow rate; climate change  
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1. Introduction 

1.1 Sponge Biology 

Sponges (Phylum Porifera) are the oldest and most primitive living group of metazoans 

on the planet (Colin and Arneson 1995).  The diverse group of sessile organisms is classified into 

four classes: Calcarea, Hexactinellida, Demospongiae, and Sclerospongiae, with an estimated 

15,000 species worldwide (Hooper and van Soest 2002).  Sponges lack organs and true tissues, 

instead relying on a complex system of water canals and a suite of specialized mobile cells to 

carry out all bodily functions, including feeding, respiration, and reproduction (Simpson 1984) 

(Fig. 1).  As efficient filter feeders, sponges filter and retain various bacteria, phytoplankton, and 

ultraplankton and often incorporate these microorganisms into their tissues as symbionts (Ribes 

et al 1999).  Water is inhaled through tiny pores called ostia, filtered for food particles and 

oxygen in flagella-lined cavities called choanocyte chambers, and exhaled through larger pores 

called oscula (Webster 2007).   

Despite their simplistic body plan, sponges exhibit a diverse range of morphologies, 

including encrusting, boring, foliose, massive, and branching forms (Barnes and Bell 2002).  

Hard skeletal support is provided by a network of hard crystalline spicules of calcium carbonate 

or glass, and the “spongy” skeleton is made up of collagen and spongin fibers (Colin and 

Arneson 1995).  Sponges are important components of the benthic environment, contributing to 

benthic-pelagic coupling (Pile et al 1996), serving as crucial reef-building organisms by 

providing structural rigor (Wulff 1984), providing substrate for settlement (Barthel and Gutt 

1992), and providing refuge for other marine organisms (Wulff 2006).   
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Figure 1 Cross section through a typical marine sponge showing general morphology and 

internal cell types (Webster 2007). 

 

1.2 Sponge Distribution     

 

Sponges occupy a diverse range of marine and freshwater habitats, from the polar waters 

of Antarctica to tropical reef systems around the world (Webster 2007).  Marine sponges are 

widely distributed, from shallow temperate waters to tropical coral reefs to deep-sea polar 

benthic habitats (Hooper and Van Soest 2002).  A study by Wilkinson and Cheshire (1989) 

examined the distribution patterns of the sponge community across the continental shelf in the 

central Great Barrier Reef.  The study found that sponge biomass, abundance, and species 

richness increase with increasing depth and decrease with increasing distance from shore.  

Higher levels of increased turbulence and exposure to ultraviolet light are the major factors 

limiting sponge growth in shallow and offshore waters.  Many sponges produce secondary UV-

blocking compounds, enabling them to tolerate high levels of exposure to UV radiation 

(Wilkinson and Cheshire 1990).  Sponges are more abundant and larger in size, on average, on 

inner-shelf reefs than offshore, which is largely due to higher levels of terrestrial nutrient run-off 
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and food availability in coastal habitats (Cleary et al 2005, Wilkinson and Cheshire 1989).  On 

the Great Barrier Reef, Wilkinson and Cheshire (1989) recorded 88 and 90 sponge species on the 

inner- and middle-shelf respectively and only 75 and 65 species on the outer-shelf and in Coral 

Sea reefs.   

1.3 Microbial Symbioses 

Many sponges have developed close associations with microbial symbionts, which 

comprise 40-60% of total tissue volume in some species (Taylor et al 2007, Hentschel et al 

2006).  Sponge-microbe associations involve a diverse range of heterotrophic bacteria, 

cyanobacteria, zooxanthellae (Symbiodinium sp.), facultative anaerobes, and Archaea, and these 

symbioses are often important aspects of the host sponge’s ecology and behavior (Webster and 

Hill 2001).  Symbiotic microbes provide sponges with many benefits, including enhanced growth 

rates, UV protection, removal of toxic metabolic by-products, and defense against predators and 

pathogens (Hill 1996, Taylor et al 2007).  One of the more important proposed benefits of these 

symbionts is nutritional requirements through the translocation of photosynthate from symbiotic 

cyanobacteria or zooxanthellae to host sponge (Wilkinson 1983).  Weisz et al (In Press) showed 

this translocation in Cliona varians forma varians, a common tropical reef sponge in the 

Caribbean, using a stable isotope pulse-chase experiment.  The study showed that unprocessed 

carbon is taken up from the water column by zooxanthellae, which then undergo photosynthesis 

and translocate fixated carbon to the host C. v. f. varians.  In addition to zooxanthellae, symbiotic 

cyanobacteria often play a major role in contributing to the host sponges’ nutrition, with the rate 

of carbon production being sufficient in some cases to provide over 100% of the combined 

carbon requirements of sponge and symbionts (Wilkinson 1983). 
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Since these microbial symbionts contribute significantly to the nutrition of the host 

sponge, it is likely that their presence, or absence for that matter, impacts host sponge 

metabolism and feeding behavior.  A study by Weisz et al (2008) showed that sponges with low 

microbial abundance (LMA) had higher pumping rates than did sponges with high microbial 

abundance (HMA).  In addition, using a novel method of measuring sponge feeding efficiency 

(Yahel et al 2005), A. Massaro et al (unpubl.) showed that an azooxanthellate (without 

zooxanthellae) sponge species in the Florida Keys had higher feeding efficiencies on three 

different bacterial types than did two zooxanthellate species from the same reef.  Both studies 

hypothesized that these phenomena are due to that fact that HMA sponges are getting a 

significant portion of their diet directly from their symbiotic zooxanthellae, and as a result, these 

sponges do not need to spend as much energy pumping and feeding heterotrophically.  Thus, the 

presence or absence of microbial symbionts has a significant influence on sponge metabolism 

and feeding efficiency. 

1.4 Disease and Climate Change  

Recent studies have shown a global increase in the prevalence of disease in marine 

organisms over the past several decades (Lafferty et al 2004).  The role that environmental 

factors may have as disease-causing agents for marine organisms on the reef is a current topic of 

research, with factors such as anthropogenic pollution, nutrient enrichment, and introduced 

species all having been linked to marine diseases (Webster 2007).  One of the primary factors in 

promoting disease outbreaks among marine organisms is global climate change (Webster 2007), 

which currently represents the most significant and increasing threat to coral reef ecosystems 

(Coker et al 2009).  Models produced by the Intergovernmental Panel on Climate Change predict 

a 1.8-4
o
C increase in global sea surface temperature by the year 2099 (IPCC 2007) (Fig. 2).  
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Marine microbial communities and associated organisms are particularly sensitive to elevations 

in seawater temperature (White et al 1991), as environmental stress compromises the 

physiological fitness of marine microorganisms and their invertebrate hosts (Webster 2007).  

Thermal stress provides conditions conductive to disease outbreaks by increasing the prevalence 

and virulence of pathogens, facilitating invasions of new pathogens, and reducing host resistance 

and resilience (Sutherland et al 2004).   

 

 

 

 

Figure 2 Predicted land and sea 

surface temperature changes by 

the year 2099 (IPCC Report 

Climate Change 2007: The 

Physical Basis). 

 

 

 

 

Sponges are a particular group of marine organisms that is currently threatened by 

climate change because of their strong associations with microbial symbionts (Harvell et al 

1999).  In a previous study, sponges in the Mediterranean showed obvious signs of disease 

linked to a 2–4°C elevation above normal seawater temperature (Cerrano et al 2000).  Without 

additional research and better means of conservation, global climate change will have a 

significant impact on the marine invertebrate community.  A recent study by Webster et al 

(2008) showed that elevated seawater temperature is a current threat to the microbial 

communities of tropical reef sponges.  Webster and coworkers investigated the seawater 
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temperature thresholds for bacterial symbiosis in the common Great Barrier Reef sponge 

Rhopaloeides odorabile.  Webster and Hill (2001) had previously showed that the heterotrophic 

bacterial community associated with R. odorabile is dominated by a single α-Proteobacterium 

strain and the phototrophic bacterial community consists of a single cyanobacterium strain.  The 

2008 study found that sponges exposed to 33
o
C, a 6

o
C increase above ambient water 

temperature, exhibited a complete loss of these primary symbionts within 24 hours and severe 

cellular necrosis after 3 days.  In addition, Bannister (2008) showed that the feeding behavior of 

R. odorabile may be impacted by environmental factors.  His study found that high 

concentrations of clay sediments in the water column resulted in significantly reduced pumping 

rates and feeding efficiencies. 

1.5 Justification for Study  

Many marine organisms are very sensitive to changes in their environment, and elevated 

seawater temperature is clearly a current threat.  Microorganisms are susceptible to very subtle 

changes in temperature (White et al 1991), making marine microbial communities and their host 

organisms particularly vulnerable.  A. Massaro et al (unpubl.) showed that the presence of 

microbial symbionts has a significant impact on feeding efficiencies in host sponges, and 

Webster et al (2008) showed that elevated seawater temperatures have a drastic adverse impact 

on these microbial associations and lead to cellular necrosis in the host sponge.  Thus, elevated 

seawater temperatures may have a significant impact on sponge feeding behavior.  R. odorabile 

was chosen as a study species because it has been recently studied (Webster et al 2008, Bannister 

2008), and it is common on the Great Barrier Reef (Bannister 2008).  In addition, R. odorabile 

has shown potential for commercial aquaculture (Louden et al 2007), but little is known about its 

ecology and behavior.  The knowledge gained from this study will help to determine optimum 
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sites for commercial aquaculture of R. odorabile as well as improve conservation and 

management strategies for protecting sponge communities worldwide from the adverse effects of 

climate change (Webster et al 2006, Louden et al 2007).  

1.6 Study Aims 

This study was a follow-up experiment on the work of A. Massaro et al (unpubl.) and 

Webster et al (2008), and the purpose was to investigate the impacts of elevated seawater 

temperature on feeding behavior in tropical sponges.  The feeding efficiency of R. odorabile at 

four different seawater temperatures was investigated by measuring filtration and pumping rates 

over a 7 day exposure period.  Methods of measuring and calculating feeding efficiency were 

based on Yahel et al (2005) and A. Massaro et al (unpubl.), and experimental water temperatures 

were determined based on the results of Webster et al (2008), which concluded that the 

temperature threshold for microbial symbiosis is between 31 and 33
o
C.  The findings of this 

study may further show that the tropical sponge community of the Great Barrier Reef and 

worldwide is currently threatened by global climate change.        

2. Methods 

2.1 Study Site 

2.1.1 Collection Site 

The collection site for organisms used in this study was Pelorus Island, North 

Queensland, Australia (18
o
32.710’S, 146

o
29.273’E).  Pelorus Island is part of the coral fringed 

Palm Islands, located in Halifax Bay in the lagoon of the central section of the Great Barrier Reef 

Marine Park (Fig. 3a).  The Palm Islands are approximately 16 kilometers from the coast near 

Lucinda and 25 kilometers from the nearest mid-shelf coral reef, located on a gently sloping 

continental shelf ranging from 20 meters on the coastal side to 32 meters on the seaward side.  
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Cloning was conducted in August 2009 and final collection was conducted in November 2009.

 2.1.2 Experiment Site          

 The study was conducted at the Australian Institute for Marine Science (AIMS), 

Townsville, Australia.  AIMS is Australia’s leading tropical marine research agency, ideally 

located approximately 50 kilometers from the center of Townsville in a scientific zone 

surrounded by a 207 hectare national park and marine reserve (Fig. 3b).  Sitting adjacent to the 

centre of the Great Barrier Reef, it is free from development, biosecure, and has access to clean 

seawater and a protected harbor.  The experiment was conducted in an indoor temperature-

controlled room at AIMS from November 18
th

, 2009 through December 5
th

, 2009.   

                                                                                                                                                                                                           

Figure 3 Location of (A) Pelorus Island (Webster et al 2006) and (B) The Australian Institute of 

Marine Science.  

 

2.2 Study Species          

Rhopaloeides odorabile is a dictyoceratid sponge in the family Spongiidae and is 

common throughout the Great Barrier Reef region (Webster and Hill 2001).  It has a massive, 

amorphous morphology, with distinct oscula positioned on the dorsal ridge and is also 
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characterized by a red-brown surface pigmentation in illuminated habitats (Thompson et al 

1987).  The preferred habitats of R. odorabile are high-energy, oligotrophic environments 

(Wilkinson and Evans 1989), and its distribution includes inner-, mid-, and outer-shelf reefs, 

mostly at depths between 5 and 15 meters where strong wave induced turbulence is a regular 

feature (Bannister et al 2007).  The species has a distinctive chemical composition, characterized 

by a rare group of C20 diterpenes, and substantial variation in the yield and composition of these 

chemicals for various collections of R. odorabile have been shown to reflect the range of 

environmental conditions under which they live (Thompson et al 1987).  Assessments of both the 

reproductive (Whalan et al 2007) and microbial ecology (Webster and Hill 2001, Webster et al 

2008) have also recently been undertaken for this species.  

 

 

 

 

 

 

 

Figure 4 The sponge Rhopaloeides odorabile (Bannister 2008).    

2.3 Collection and Cloning (Nicole Webster)       

One large R. odorabile was collected by scuba at 15 meters from Pelorus Island. This 

donor sponge was cut into twelve individual clones using a sharp knife and then transferred to 

aquapurse racks that were secured to the reef base near the original collection site.  Each sponge 

clone was approximately 50 cm
3
 and contained one clear exhalent osculum.  The clones were 
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allowed to heal on the reef for three months before collection and then placed in an outdoor 

seawater flow-through aquarium at 27
o
C water temperature for a one week acclimation period at 

the Australia Institute of Marine Science, Townsville.   

2.4 Experimental Set-Up         

 The sponges were transferred from the outdoor aquarium to twelve 30 liter aquaria in an 

indoor temperature-controlled seawater flow-through system.  One sponge was placed into each 

aquarium.  Incoming seawater was filtered to 1 mm to remove large particulates yet provide the 

sponges with a sufficient nutritional supply in the form of small particulates and microorganisms.  

Sponges were be maintained under a diel cycle of 12:12 hours at light intensity reflecting 15 

meters on the reef.  The aquaria were evenly split into four groups, each representing a different 

seawater temperature (27
o
C, 30

o
C, 31

o
C, and 32

o
C), and placed in random order.  Initially, water 

flowing into all aquaria was left at 27
o
C for a one week acclimation period.  Temperatures were 

then raised gradually (0.2
o
C hr

-1
) until reaching the final respective treatment levels.                      

2.5 Sampling            

 2.5.1 Inhalant and Exhalent Sampling       

 Four time points were used (0 days, 1 day, 3 days, and 7 days).  The 0 day time point was 

sampled at the end of the one week acclimation period in the indoor aquaria, and the 1 day time 

point was sampled 24 hours after all tanks had reached their respective adjusted water 

temperatures.  At each time point, one 10 ml inhalant water sample and one 10 ml exhalent water 

sample were collected from each of the three sponges at each temperature.  Each inhalant sample 

was collected by placing the tip of a needle as close to the ostia of the sponge as possible without 

touching the sponge and slowly drawing up 10 ml of water into a syringe (Fig. 5).  Each exhalent 

sample was collected by placing the tip of a needle as far into the osculum of the sponge as 
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possible without touching the sponge and slowly drawing up 10 ml of water into a syringe.  Each 

10 ml sample was fixed with 0.5 ml 37% formalin immediately after collection.    

Figure 5 Schematic representation of inhalant and exhalent sampling techniques (modified from 

Yahel et al 2005). 

 

2.5.2 Bacterial Cell Counts         

 Each inhalant and exhalent water sample was stained with 20 µl DAPI (2 µg µl
-1

) for five 

minutes in the dark and then filtered onto a 25 mm black isopore membrane filter (0.22 µm) by 

vacuum filtration.  When black filters were unavailable, identical white isopore membrane filters 

were stained using Irgalan Black.  The white filters were soaked for two hours in a solution of 

Irgalan Black (0.002 g ml
-1

) in 2% acetic acid and then rinsed in clean water and used 

immediately.  Each filter was then viewed under an epifluorescent microscope.  The total number 

of bacterial cells present in each sample was estimated under the DAPI filter, utilizing the 

fluorescence of stained DNA.  Five fields of view were counted at 40x magnification for each 

sample.  The total number of phototrophic bacteria was then estimated under the Cy3 filter, 
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utilizing the autofluorescence of chlorophyll a.  Five fields of view were counted at 20x 

magnification for each sample.  For each sponge, the mean number of phototrophic bacteria was 

halved and subtracted from the mean number of total bacterial cells to obtain the average total 

number of heterotrophic bacterial cells present in the sample.  This calculation was done 

separately for each inhalant and exhalent sample.               

 2.5.3 Volume Flow Rate Measurements      

 At each time point, immediately after inhalant and exhalent samples were collected, the 

pumping rate of each of the three replicates at each temperature was measured.  A clear plastic 

ruler was attached vertically to the inside of a 2000 ml beaker.  Each sponge was transferred into 

the beaker, being careful to keep it completely submerged the entire time, and placed directly in 

front of the ruler with the oscular opening facing up, perpendicular to the ruler.  Pumping rates 

were recorded on video, taping the movement of dye fronts in the excurrent plume.  Using a 

syringe and needle, small ‘puffs’ of approximately 0.1 ml fluorescein dye (100 mg l
-1

) were 

released directly into the osculum from which the exhalent feeding sample was collected.  Video 

recordings of dye movement were analyzed, and the exact time it took for the top of the puff to 

travel from one mark on the ruler to another was recorded.  The distance traveled was then 

divided by time to give a pumping rate (cm s
-1

) for each sponge.  The diameter of each oscular 

opening was also measured and recorded in cm.  Volume flow rate (ml s
-1

) was then calculated 

by multiplying the pumping rate by the cross-sectional area of the oscular opening.    

2.6 Feeding Efficiency Calculations         

 Filtration rate on both heterotrophic and phototrophic bacteria of each sponge at each 

time point was calculated as [(Inhalant-Exhalent)/Inhalant] using the mean number of cells 

counted from each replicate.  Feeding efficiency, or the amount of water the sponge can 100% 



17 

 

clear of bacteria per unit time, of each replicate at each time point was then computed by 

multiplying the filtration rate by the volume flow rate.  The mean feeding efficiency on both 

heterotrophic and phototrophic bacteria for each temperature at each time point was calculated 

and recorded.    

2.7 Data Analyses  

 Variability in volume flow rates and feeding efficiencies on both heterotrophic and 

phototrophic bacteria was assessed using a two-way analysis of variance (ANOVA) with time 

and temperature as the independent variables (Statistica 6.0; StatSoft Inc., Tulsa, OK USA).  

Post-hoc differences were examined with the Fisher LSD test.     

3. Results 

3.1 Temperature Treatment Observations 

 All but one 31
o
C sponge clone survived and remained visibly healthy (Fig. 6a) in each of 

the 7 day exposures at 27-31
o
C (the deceased clone was replaced for the 7 day exposure 

sampling).  However, two clones exposed to 32
o
C exhibited minor surface necrosis (<10% 

surface area) after 24 hours, and one clone at 32
o
C exhibited major surface necrosis (50-70%) 

after 24 hours.  All three clones at 32
o
C became covered in white mucus and exhibited major 

surface necrosis, revealing protrusions of skeletal fibers from the tissue and demonstrating 

significant stress after 3 days (Fig. 6b).  All 32
o
C clones had died by 7 days.      

Figure 6 R. odorabile 

from T=3 days (A) 

showing healthy 

pinacoderm (outer 

layer) tissue at 27
o
C 

and (B) major surface 

necrosis and skeletal 

protrusion at 32
o
C. 
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3.2 Volume Flow Rates 

Clones at 27
o
C had an average volume flow rate of 0.065±0.003 ml s

-1
 and clones at 30

o
C 

had an average volume flow rate of 0.064±0.003 ml s
-1

 throughout the 7 day exposure period.  

These clones exhibited no change (P>0.05) in volume flow rates over time (Fig. 7).  Clones at 

31
o
C exhibited a gradual reduction in volume flow rate throughout the 7 day exposure period, 

with slightly reduced (P>0.05) volume flow rates after 24 hours and 3 days and significantly 

lower (P<0.05) volume rates than those at 27-30
o
C after 7 days (see Appendix 1).  Two of the 

32
o
C clones stopped pumping completely and the third clone had a drastically reduced volume 

flow rate (mean = 0.031 ml s
-1

) after 24 hours.  All 32
o
C clones stopped pumping after 3 days.   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Mean volume flow rate (ml s
-1

) from R. odorabile exposed to 27-32
o
C seawater over a 

7 day trial.  N=3 except for 31
o
C, T=3days (N=2) and 32

o
C, T=1day (N=1); bars represent ± s.e. 

 

3.3 Feeding Efficiency 

3.3.1 Heterotrophic Bacteria 

Clones at 27
o
C had an average feeding efficiency on heterotrophic bacteria of 

0.020±0.003 ml s
-1

 and clones at 30
o
C had an average feeding efficiency on heterotrophic 
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bacteria of 0.018±0.002 ml s
-1

 throughout the 7 day exposure period.  These clones exhibited no 

change (P>0.05) in feeding efficiency on heterotrophic bacteria over time (Fig. 8).  Clones at 

31
o
C exhibited a gradual reduction in feeding efficiency on heterotrophic bacteria throughout the 

7 day exposure period, with significantly lower (P<0.05) feeding efficiencies than those at 27-

30
o
C after 24 hours (see Appendix 1).  After 24 hours, the single pumping clone at 32

o
C had a 

drastically reduced feeding efficiency on heterotrophic bacteria (mean = 0.006 ml s
-1

).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Mean feeding efficiency (ml s
-1

) on heterotrophic bacteria from R. odorabile exposed 

to 27-32
o
C seawater over a 7 day trial.  N=3 except for 31

o
C, T=3days (N=2) and 32

o
C, T=1day 

(N=1); bars represent ± s.e. 

 

3.3.2 Phototrophic Bacteria 

 

Clones at 27
o
C had an average feeding efficiency on phototrophic bacteria of 

0.025±0.003 ml s
-1

 and clones at 30
o
C had an average feeding efficiency on phototrophic 

bacteria of 0.027±0.002 ml s
-1

 throughout the 7 day exposure period.  These clones exhibited no 

change (P>0.05) in feeding efficiency on phototrophic bacteria over time (Fig. 9).  Clones at 

31
o
C had an average feeding efficiency on phototrophic bacteria of 0.023±0.002 ml s

-1
 with no 
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change (P>0.05) through 3 days with a significant reduction (P<0.05) to 0.015±0.001 ml s
-1

 after 

7 days (see Appendix 1).  After 24 hours, the single pumping clone at 32
o
C had a drastically 

reduced feeding efficiency on phototrophic bacteria (mean = 0.002 ml s
-1

).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Mean feeding efficiency (ml s
-1

) on phototrophic bacteria from R. odorabile exposed to 

27-32
o
C seawater over a 7 day trial.  N=3 except for 31

o
C, T=3days (N=2) and 32

o
C, T=1day 

(N=1); bars represent ± s.e. 

 

4. Discussion 

4.1 Summary of Results 

This study revealed that the feeding behavior of the tropical reef sponge, R. odorabile, is 

significantly impacted by seawater temperatures of 31
o
C and 32

o
C, only 2-3

o
C above the mean 

summer water temperature at Orpheus Island, nearby Pelorus Island from where the sponges 

were collected (Berkelmans and Willis 1999).  After 24 hours at 32
o
C, volume flow rate and 

feeding efficiencies on both heterotrophic and phototrophic bacteria were drastically reduced.  

Volume flow rate and feeding efficiency on heterotrophic bacteria at 31
o
C were significantly 
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reduced after 24 hours; however, feeding efficiency on phototrophic bacteria remained normal 

through 3 days and was not significantly reduced until 7 days. 

4.2 Thermal Threshold for Microbial Symbiosis 

The impact of temperature on feeding efficiency in R. odorabile coincides with the 

findings of a recent study that investigated the impact of temperature on the microbial 

community in R. odorabile with a similar setup to this study (Webster et al 2008).  In the 

previous study, no differences in bacterial community composition or sponge health were 

detected in treatments between 27 and 31
o
C.  Sponges exposed to 33

o
C, however, exhibited a 

complete loss of primary symbionts within 24 hours and major cellular necrosis after 3 days.  

These findings are consistent with the present study where sponges exposed to 32
o
C exhibited a 

dramatic reduction in feeding efficiency after 24 hours and the complete inability to feed after 3 

days.  Furthermore, the previous study found that the thermal threshold for microbial symbiosis 

in R. odorabile was between 31 and 33
o
C.  Although no difference in bacterial community 

composition or sponge health was observed at 31
o
C, this temperature is close to the thermal 

threshold and physiological impacts are still likely.  The impact of 31
o
C on feeding efficiency 

observed in the present study is likely an acute stress response to the water temperature nearing 

the thermal threshold.       

4.3 Volume Flow Rate 

Few studies have investigated the effect of seawater temperature on pumping rate in 

tropical sponges; however, one previous study found reduced volume flow rates due to thermal 

stress.  Reiswig (1971) showed that pumping rates of Mycale sp. and Verongia gigantea were 

reduced by an average of 16.11% at water temperatures 3.5
o
C lower than the average ambient 

temperature.  Although this previous study did not investigate the effects of elevated water 
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temperatures, the findings coincide with the 4
o
C deviation from normal ambient temperature that 

caused a reduction in volume flow rate in the present study.  Several other studies have shown 

that volume flow rate in sponges is reduced in response to other environmental factors, 

particularly increased concentrations of clay sediment (Gerrodette and Flechsig 1979, Bannister 

2008).  

4.4 Feeding Efficiency    

To date, few studies have assessed the effects of seawater temperature on feeding 

behavior in marine sponges.  A recent study found that the tropical marine sponge Halichondria 

panicea exhibited increased filtration rates of Rhodomonas sp. at seawater temperatures 5.5
o
C 

above the normal ambient temperature for these sponges (Riisgard et al 1993).  The study 

proposed anatomical changes, particularly the dilation of inhalant canals and/or choanocyte 

chambers that may allow the sponges to filter more efficiently; however, they did not propose an 

ecological reason for the increased filtration rates.  The study by Riisgard and coworkers only 

measured filtration rates of Rhodomonas sp., a phototrophic algae containing chlorophyll a.  The 

present study found that filtration rate of phototrophic bacteria in R. odorabile increased (by 

definition, a constant feeding efficiency and reduced volume flow rate means increased filtration 

rate) in elevated seawater temperatures, which coincides with the findings of Riisgard et al.  

However, the present study also found that feeding efficiency on heterotrophic bacteria was 

reduced at elevated seawater temperatures. 

4.5 Selective Filtration 

This reduction in feeding efficiency on heterotrophic bacteria and the maintenance of 

normal feeding efficiency on phototrophic bacteria seen in R. odorabile at elevated seawater 

temperature is clear evidence of selective filtration.  Previous studies have shown that 
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phototrophic cyanobacteria, Synechococcus sp., (470 fg C cell
-1

) (Campbell et al 1994) are over 

twenty times as carbon-rich as are heterotrophic bacteria (20 fg C cell
-1

) (Ducklow et al 1993).  

Thus, it is likely that when a sponge experiences thermal stress, it will selectively filter food 

particles, in this case phototrophic bacteria that provide it with more energy, rather than waste 

energy filtering less nutritional heterotrophic bacteria.  Feeding efficiency on phototrophic 

bacteria at 31
o
C was significantly reduced after 7 days, which most likely indicates that there is a 

time threshold between 3 and 7 days at which R. odorabile can no longer cope with the thermal 

stress and as a result, no longer has the ability to feed effectively.      

Numerous studies have found that sponges exhibit selective filtration patterns.  Stuart and 

Klumpp (1984) showed that the common encrusting demosponge sponge Haliclona anonyma 

exhibited effective food resource partitioning on the basis of particle size, selectively filtering 

smaller particles (100%) over larger particles (20%).  More recently, Yahel et al (2006) showed 

that two common glass sponges, Rhabdocalyptus dawsoni and Aphrocallistes vastus, selectively 

filtered photosynthetic eukaryotic algae (86±9%) over heterotrophic bacteria (28±16%) when 

abundance of both was high.  These findings coincide with the selective filtration of 

photosynthetic bacteria over heterotrophic bacteria exhibited by R. odorabile under thermal 

stress in the present study. 

4.6 Other Considerations 

The vast majority of previous works investigating the behavioral ecology of sponges have 

been conducted in situ in order to study the behavior of the sponge of interest in its most natural 

setting.  Many sponge species are very sensitive to laboratory conditions and may exhibit a 

variety of stress responses when removed from their natural habitat (Riisgard et al 1993).  Thus, 

behavior in laboratory settings may be deviated from natural behavior.  The present study was 
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conducted in a temperature-controlled laboratory, and thus, the feeding behavior of R. odorabile 

may not accurately reflect its feeding behavior in its natural habitat.  It is important to note, 

however, that the results of this study were completely dependent on differences observed 

between temperatures and over time.  Thus, since sampling techniques were consistently applied 

to all replicates throughout the 7 day exposure period, the effects of temperature on feeding 

behavior observed in this study are valid. 

5. Conclusion and Future Directions  

The thermal threshold for normal feeding behavior in R. odorabile was 31
o
C, a 4

o
C 

elevation above average ambient seawater temperature for this species.  Once this threshold was 

reached, sponges exhibited reduced volume flow rate and clear selective filtration for 

phototrophic bacteria, which is more nutritional to the sponge than heterotrophic bacteria 

(Campbell et al 1994, Ducklow et al 1993).  The thermal threshold for effective feeding and 

pumping in R. odorabile is identical to the symbiosis threshold for corals and their zooxanthellae 

at the same location (Berkelmans and Willis 1999).  As sea surface temperatures are predicted to 

increase by up to 4
o
C by the year 2099 (IPCC 2007), these findings indicate that sponges may 

have a similar vulnerability as corals to changes in seawater temperatures. 

Further research is required to assess the extent of the impact of elevated seawater 

temperature on feeding behavior in tropical sponges.  An additional study to investigate damage 

to choanocyte chambers in R. odorabile in response to elevated seawater temperature will be 

conducted in the near future.  Tissue samples from R. odorabile exposed to the same water 

temperatures as in this study will be analyzed under a light microscope in order to assess and 

quantify disruption of choanocyte chambers.  The results should provide evidence of the 



25 

 

physiological impacts of temperature on the cells involved in sponge feeding, further supporting 

the impacts observed in the present study. 

In addition, further studies should be conducted to assess the role of microbial symbiosis 

in sponge feeding behavior and the effects of seawater temperature on this association.  Studies 

have shown that LMA sponges have higher volume flow rates than do HMA sponges (Weisz et 

al 2008) and that azooxanthellate sponges have higher feeding efficiencies for various bacterial 

types than do zooxanthellate sponges (A. Massaro et al, unpubl.).  Since Webster et al (2008) 

found a complete shift of sponge-microbe associations at elevated seawater temperatures, the 

impact of temperature on feeding behavior may be different in sponges with different levels of 

microbial abundances.  Future studies investigating the differences between the impacts of 

elevated seawater temperature on LMA and HMA sponges as well as azooxanthellate and 

zooxanthellate sponges will provide a greater understanding of the influence that symbiotic 

microbial communities have on marine sponge feeding behavior.  
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Appendix 1 

 

Table A1 Summary of two-factor ANOVA Fisher LSD test comparing the mean volume flow 

rates across time (T=0-7days) and temperature (27-31
o
C).  Columns 1 and 2 represent 

significantly different homogenous groups (P<0.05). 

Time (days) Temp (
o
C) Mean Volume  

Flow Rate (ml s
-1

) 

1 2 

7 31 0.032177  **** 

3 31 0.049537 **** **** 

1 31 0.054956 ****  

3 30 0.060878 ****  

0 30 0.061954 ****  

0 31 0.062029 ****  

0 27 0.063382 ****  

7 27 0.064661 ****  

3 27 0.064987 ****  

7 30 0.065534 ****  

1 27 0.066524 ****  

1 30 0.067616 ****  

 
 

Table A2 Summary of two-factor ANOVA Fisher LSD test comparing the mean feeding 

efficiencies of heterotrophic bacteria across time (T=0-7days) and temperature (27-31
o
C).  

Columns 1, 2, and 3 represent significantly different homogenous groups (P<0.05). 

Time (days) Temp (
o
C) Mean Feeding  

Efficiency (ml s
-1

) 

1 2 3 

7 31 0.003587   **** 

3 31 0.005568  **** **** 

1 31 0.007819  **** **** 

0 31 0.013816 **** **** **** 

3 30 0.014382 **** **** **** 

7 27 0.016163 **** ****  

1 30 0.017074 **** ****  

0 30 0.017766 **** ****  

3 27 0.018497 **** ****  

1 27 0.019978 ****   

7 30 0.020857 ****   

0 27 0.024521 ****   
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Table A3 Summary of two-factor ANOVA Fisher LSD test comparing the mean feeding 

efficiencies of phototrophic bacteria across time (T=0-7days) and temperature (27-31
o
C).  

Columns 1 and 2 represent significantly different homogenous groups (P<0.05). 

Time (days) Temp (
o
C) Mean Feeding  

Efficiency (ml s
-1

) 

1 2 

7 31 0.014745  **** 

1 31 0.020672 **** **** 

3 27 0.021289 **** **** 

0 31 0.022153 **** **** 

3 30 0.022644 **** **** 

1 27 0.025026 **** **** 

7 30 0.025534 **** **** 

3 31 0.025624 **** **** 

0 27 0.026833 **** **** 

7 27 0.028097 **** **** 

0 30 0.028489 ****  

1 30 0.030874 ****  
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