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Abstract 
 
 
 At a time when the future of fresh water resources in Australia becomes more unpredictable 

as a result of global climate change, it will become necessary to look for new alternative sources of 

fresh water. Reclaimed wastewater is an important fresh water resource that will become 

increasingly important. One strategy to augment the public water supply is to inject and store 

reclaimed water underground, then to pump it out of the aquifer and treated to drinking water 

standards. This is known as Aquifer Storage and Recovery (ASR) and similar schemes have been 

established in the United States, United Kingdom, Canada, Australia, South Africa and Israel. 

 This report examines the feasibility of using ASR to supply water to the towns of Evans 

Head and Ballina. Using available hydrogeological data, I analyzed the potential for each aquifer to 

transport the flow of wastewater. I also determined adverse interactions that may take place between 

the injected reclaimed wastewater and ambient groundwater, and how to treat these problems. Basic 

plans for treatment are advised. 

Based on the data I have analyzed, I have determined that pending further study, ASR is 

feasible in this region. While this report is by no means comprehensive, it provides a starting point 

for designing an ASR scheme in this area. 

 

 
 
 
 
 
 
 
 
ISP Topic Codes: 625 (Geology), 819 (Sanitary, Municipal, and Waste Management), 812 (Civil 

Engineering) 

Keywords: Aquifer Storage and Recover, ASR, Groundwater, Wastewater, Reclaimed Water 
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1. INTRODUCTION 

1.1 Theory 

Aquifer Storage and Recovery (ASR) is the process of recharging of an aquifer by injecting 

water into it through wells or by surface spreading and infiltration and then pumping the water out 

when it is needed. The aquifer functions as a water bank.  The aquifer is recharged in times of 

surplus, typically during the rainy season and water is extracted when available water storages 

cannot meet demand.  

ASR schemes commonly operate in conjunction with wastewater treatment plants, by 

injecting the treated waste water into the aquifer, and recovering the water after a determined 

transport time (and distance) in the aquifer, depending on local hydrogeology and water quality 

standards. 

There are many advantages to using this type of system to store water. It may reduce the 

need for surface reservoirs, which are expensive and resource intensive to build and maintain, are 

left vulnerable to tampering (which would be more difficult with an underground reservoir), and are 

prone to losing water due to evaporation. According to the United States Ground Water Association, 

ASR not only provides water for human consumption by recharging aquifers but also prevents salt-

water intrusion in coastal aquifers and helps maintain base stream flow levels (Pyne, undated). As 

global climate change affects the hydrologic cycle and more is understood about the harmful effects 

of damming waterways, groundwater will become an increasingly important source of fresh water. 

Since most aquifers are well protected from surface pollution, in most instances the water only 

requires disinfection to become drinking water.  

ASR systems cost about half that of traditional surface storage systems for equal storage 

volumes. When the cost of water treatment plants and other infrastructure required to deliver 

potable water from surface storages is considered, ASR systems can deliver water for as little 10% 

of the cost of traditional storage and treatment systems (Pyne, undated). 
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1.2 A Typical ASR Scheme 

Figure 1 below shows a diagram of a general ASR scheme. There is also a general schematic 

of an ASR scheme available in Appendix E. The quality of the ambient groundwater in these 

storage zones ranges from pure to brackish, with a concentration for total dissolved solids of up to 

5000 mg L-1. Almost all aquifers have at least one water quality problem (e.g. raised levels of Fe, 

Mn, Fl, H2S, SO4
2-, Cl, 224Ra, alpha radiation or other elements that may be displaced by recharging 

depleted aquifers) that necessitates some form of treatment after withdrawal if the water is to be 

used for human consumption. The potential for recovery varies based on the hydrogeology of the 

region. In some areas it may even be feasible and cost-effective to store water in an aquifer 

containing sea water, while in other areas it may not be possible to recover as much water as was 

previously injected. While image belowFigure 1 shows a confined aquifer, it is also possible to use 

unconfined aquifers. The aquifers generally occur within strata containing sand, clay sand, 

sandstone, gravel, limestone, dolomite, glacial drift, and basalt. When the water is injected into the 

existing aquifer, it slowly displaces that the resident groundwater, creating a “bubble” of fresh 

water. In current schemes, the volume of these “bubbles” can range from about 50 ML to 10,000 

ML.  
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Figure 1. Diagram of Aquifer Storage and Recovery. Source: Parliament of Victoria (2004). 

1.3 ASR Schemes Worldwide 

The United States Geologic Survey began conducting tests on ASR technology in the 1940s, 

and the first well in the United States was constructed in Wildwood, New Jersey in 1969. In 1983, 

Manatee County, Florida began using ASR technology, and since then, ASR schemes have been 

constructed in the United States, United Kingdom, Canada, Australia, South Africa and Israel. The 

Netherlands, New Zealand, Thailand, Taiwan and Kuwait are all in the process of developing ASR. 

There are currently wells with recovery capacities that range from 2 ML d-1  (from single wells) to 

wellfields with recovery capacities upwards of 400 ML d-1. There is currentlyσy a proposal to create 

a large wellfield in the Florida Everglades, which would have a total recovery capacity of 8,000 

MlL d-1.  

There are a few schemes that are used for indirect potable water use (as in the case of this 

project). Examples of this type of scheme in the United States include a project in Denver, CO, the 

Potomac Estuary, VA, Los Angeles and Orange County, CA, El Paso, TX, San Diego, CA, and 

Tampa, FL (Metcalf and Eddy 2003).  

 

1.4 ASR Schemes in Australia 

There are currently four ASR systems operating in Australia, and several more are proposed. 

Figure 2 below shows where these systems are located. There are currently no ASR systems on the 

East Coast of Australia.  
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Figure 2. Distribution of ASR schemes in Australia. Source: Pyne (undated). 
 

A very large system operates in Salisbury, SA, near Adelaide. During high periods of high 

rainfall in the winter, water is naturally filtered by the wetlands and deposited 164 meters 

underground for storage. In the summer, the water is recovered to irrigate sports fields. Due to the 

success of the Salisbury ASR scheme, several small and large scale ASR systems have been 

established in South Australia., These types of schemes can reduce the burden on surface water 

systems such as the Murray River, which has seen reduced flows and increased salinity recently due 

to poor management in Queensland, New South Wales, Victoria, and South Australia. CSRIO is 

currently investigating the possibility of an ASR system in Melbourne, and the possibility of using 

ASR at the domestic level (Dillon 2006). In 2007 CSIRO began investigating the world’s first 

ASTR scheme, where the water is transported through the aquifer a distance from the injection point 

to the recovery point (Dillon et al. 2007).  

The success of the Salisbury scheme has also prompted scientists to investigate the 

possibility of using ASR to store and treat reclaimed water. Thisat will be the focus of this study. In 

2003 Dillon et al. (2003) conducted a study on ASR using reclaimed water from the Bolivar sewage 
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treatment plant in South Australia. This scheme involved the use of secondary treated wastewater 

from the Bolivar sewage treatment plant, which was stored before being pumped into the limestone 

aquifer. It was found that the water was able to travel up to 200 m over at least 12 months, and at 

the time of removal was found to be suitable for irrigation. The passage of the treated water through 

the aquifer resulted in reduced concentrations of suspended solids, organic carbon, some metals and 

E. Coli from the water. The system that this paper will investigate may include the use of tertiary 

treated wastewater to simplify the treatment processes that will be needed to further reduce public 

health risks.  

 

1.5 Water in Northern NSW  

ASR is a cost-effective way to meet the water demands of regions without reliable water 

resources. it is likely to be especially effective in areas such as northern New South Wales, with 

long periods of drought and periodic flood events. There has never been an ASR scheme proposed 

in Northern NSW, but there has been some investigation into the possibility of discharging treated 

wastewater into aquifers under in the Evans Head region for the purpose of disposal (Coffey 1997; 

Coffey 2003).  

According to Rous Water, the provider of drinking water in this region, their “existing water 

sources can comfortably meet demand for water in the short to medium term. However it’s essential 

to plan for the future so we are prepared for future water needs in the region” (Rous Water, 

undated). They Rous Water is also proposing the construction of a new dam in Dunoon, NSW to 

meet future demand for water. Ballina, Lennox Head, and Evans Head wastewater treatment plants 

currently discharge 20,816,400 L day-1 of water to nearby surface waters. Very little of this water is 

reused. Ballina Council is planning a massive major augmentation overhaul of their treatment plants 

and infrastructure to recycle and increasing amount of water in the coming years (Hess & Balandin 

2009). 

 

 

Comment [MSOffice2]: Is this what you 
mean? 

Comment [MSOffice3]: Name the 
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Comment [MSOffice4]: Over what time 
period? 
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1.6  Study Goals 

The goal of this study is was to determine the feasibility and potential environmental 

impacts of using Aquifer Storage and Recovery (ASR) to meet the growing demand for fresh water 

in Ballina and Evans Head within Northern New South Wales. This report will assess the 

hydrogeologic suitability of the aquifers under in the Ballina and Evans Head regions to support and 

ASR scheme, and to design a feasible system.   

 

 
2. METHOD 

 

This study was conducted entirely from the GeoLINK office in Lennox Head, NSW Australia. 

 

2.1  Desktop Compilation of Geology and, Groundwater Hydrology ology 

 I followed the procedure for developing an aquifer storage and recovery project outlined by 

in the Australian Guidelines for Water Recycling (2009), as published by the Natural Resource 

Management Ministerial Council. I conducted the Entry-level, or Stage 1 assessment. The goals of 

the Entry-level assessment are to determine whether or not there is likely to be a suitable aquifer, to 

assess the level of difficulty that the project will bepose, and to determine which aspects of the 

project require further study.  

To determine whether or not there exists a suitable aquifer in Ballina and Evans Head, I 

consulted geologic maps, groundwater bore data, and old existing reports of projects concerning the 

groundwater in this region. From this these data, I was able to create images of the aquifers 

underlying Ballina and Evans Head. Using hydrogeologicaly data from various sources, I located 

three aquifers of sufficient size have been in close proximity to the Ballina and Evans Head 

Wastewater Treatment Plants. One of the aquifers, however, located North of Evans Head, would 

Comment [MSOffice6]: What does this 
mean? 
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require infrastructure built in Broadwater National Park, so it is not considered viable to design 

establish a scheme in that region at this time.  

2.2  Calculations 

Using flow data from the wastewater treatment plants, known properties of each aquifer, and 

Darcy’s Law I was able to determine flow rates of water through the aquifers. The cross sections 

only provide speculation as to what the true shape of the aquifer may be, so only bore hole depth 

data is used in the calculations of groundwater flow. Using a modified version of Darcy’s Law, it is 

possible to calculate flow rate on a “per width” basis, which is known as the transmissivity, to find 

the maximum flow rate for the aquifer. Darcy’s Law is a relationship that describes fluid flow 

through a pourous medium. 

Q= −Khw
∂h

∂x
              [1]

Tx = −Kh
∂h

∂x
                [2]

 

The quantity ∂h/∂x is also known as the gradient (i), which can be calculated using the following 

formula: 

i =
∂h

∂x
=

h1 − h2

L
          [3] 

where h is the head at a given point, ∂h/∂x is the change in head over L, and L is the distance 

between the two head points taken along the direction of the flow of groundwater. K is the hydraulic 

conductivity, Q is the flow rate, and Tx is the transmissivity, in units of L d-1 m-1/day/m. Coffey 

(2002) contains the experimentally laboratory determined hydraulic conductivity values and the 

transmissivity values for the aquifer. I have chosen to use the conductivity values for calculations, 

because these transmissivity values have been determined for the existing depth of the groundwater 

(regions that have been labeled as “water bearing”) and I wish to model the entire layer of 

Woodburn Sand. This equation is used to calculate a flow rate for both the injection point and the 

recovery point at each site. In both cases, the flow rate at the recovery point was found to be less 

Comment [MSOffice7]: What does this 
mean? 

Comment [MSOffice8]: Transmissivity 
is a measure of the flow through a strip of 
aquifer one unit wide (i.e. 1 m) that extendes 
for the full depth of the aquifer. 

Comment [MSOffice9]: Define K 



12 

than at the injection point, so the rate of injection is limited by the flow rate of the aquifer at the 

recovery point. 

To find the width that the aquifer must be to accommodate a certain flow rate of water, the 

following equation is used: 

w = n
QTW

Tx

                   [4] 

where QTW is the flow rate of reclaimed water through the aquifer, and Tx is the transmissivity 

calculated above. This equation states that the theoretical required width is equal to the percentage 

of reclaimed water flow being injected into the aquifer (n) multiplied by the ratio of the total flow to 

the “per width” flow. Although this model ignores ambient groundwater flow, other simple models 

also ignore the ambient flow (Dillon 2002, p. 2) so I feel comfortable ignoring it at this stage. 

 

2.3  Groundwater Chemistry 

Once I had concluded that based on available data there are sufficientwere aquifers with 

sufficient storage and appropriate hydrogeological characteristics present for a scheme of this type, I 

investigated the water chemistry of the effluent and groundwater to identify possible the potential 

for adverse reactions following mixing of these waters and advise identify treatment strategies for 

the effluent prior to injection. My analysis of the water quality data is mainly derived from reading 

other reports written about injecting wastewater into groundwater (Coffey 1997; Coffey 2002; AGT 

2002; Dillon 2002; Dillon et. al 2003).  
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3. RESULTS 

3.1  The Evans Head Aquifer 

 The land in consideration for ASR development here lies to the North of Evans Head, eEast 

of the Richmond River. Figure 3 below shows the location on a map.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The blue line is the line that the hydrogeological cross sections have been adapted from. The dotted black line 
represents a divide in the flow of the Woodburn Sand Aquifer. The black dot indicates the location of  the Evans Head 

WWTP. Source: Central Mapping Authority of NSW 1987. 
 

Under this land there are two main aquifer systems, ; a semi-confined aquifer of Woodburn Sand 

and a confined aquifer of South Casino Gravel. Figure 4 below shows a cross section (taken along 

the blue line in figure 3) created from interpolating stratigraphical data taken from bore hole data.  

 
 
 
 
 
 
 
 
 
 
 
 

Comment [MSOffice10]: Try using 
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Figure 4. A Cross Section of the Evans Head aquifer systems, with the Woodburn Sand (large region with dots) and 
South Casino Gravel aquifers shown. Source: Coffey (2002) 

 

In 1997 and 2002, Coffey Partners International conducted a study to determine the 

feasibility of injecting reclaimed water into both of these aquifers for disposal as opposed to reuse. 

This study is only targeting the Woodburn Sand Aquifer because it is large and close enough to the 

surface that it will not be too difficult to inject and recover the reclaimed water. As can be seen from 

figure 4, there are four regions of Woodburn Sand (Figure 4, I-IV) , which all formed at different 

times, and “no single feature distinguishes each of the four units, however they could be tentatively 

separated by a combination of different textures, sieve analysis, lithology, heavy mineral 

concentration and quartz surface textures” (Coffey 1997, p. 10). For the purpose of basic 

groundwater flow calculations though, I will not differentiate between the four units.  

There are three basic subdivisions of the Woodburn Sand aquifer. Around bore 39152, there 

is a divide in the flow of the groundwater through the Woodburn Sand aquifer. East of the divide, 

the water flows toward the Pacific Ocean, and wWest of the divide it flows toward the Richmond 

River. To the east of the divide, there is a layer of Broadwater Sandrock Member, which is a semi-

confining layer, and has a vertical hydraulic conductivity of at least one order of magnitude less 

than the Woodburn Sand (Coffey 1997, p. 17). There is a layer of Woodburn Sand above the 

Broadwater Sandrock Member, but this study is concerned with the aquifer that is below the semi-
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confining layer. To the wWest of the divide, the Woodburn Sand aquifer is either semi-confined by 

floodplain soils or unconfined. 

 The bore log data include the depths at which water was found, but for this study I am taking 

the thickness of the aquifer to include the entire Woodburn Sand layer. Figure 5 below shows the 

flow of groundwater as modeled by the New South Wales Water Resources Comission (Drury 1982) 

using the values for conductivity of each layer shown below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Groundwater flows and equipotential lines for the Evans Head cross-section. Source: Drury (1982). 

 

Each side of the divide will be analyzed separately, as two distinct possiblities for an ASR schemes 

in this area. Using Darcy’s Law, it is possible to calculate the flow rate that the aquifer could 

possibly accomidate (see Method Section 2.2). Since the width of the aquifer is unknown, it is not 

feasible to determine the volume of these aquifers with the given data. Although the explicit width 

of the aquifer is not known, based on additional geological cross sections of the region I have 

estimated that the aquifer extends fairly uniformly for at least 1 km to the South and 3 km to the 

North, with no major confining boundaries within 10 km (Drury 1982).  
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3.1.1  Boundary Conditions 

There is no bore data or other explicit hydrogeological data for the region surrounding the 

cross section shown in Figure 1, but the topography and landscape north of the Evans River is 

homogenous, so I will assume that the hydrogeology is somewhat homogenous is well. This 

assumption is supported by the bore data from the Rileys Hill cross section in Figure 6 (Drury 1982, 

p. 22), as it shows very similar geology to the Evans Head section further south, including the 

Woodburn Sand layers and the Broadwater Sandrock Member.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Rileys Hill Cross Section. Source: Drury (1982). 
 

The heathland that covers this aquifer at Evans Head over the first layer I of Woodburn Sand 

extends North nearly all the way to Ballina. However, sSouth of the Evans River the topography 

and geology is different, and without more complete geologic information about this region, I will 

assume that this is the Southern boundary of the Woodburn Sand aquifer. This boundary is 

approximately 2 km sSouth of the cross section. Thus, so the theoretical maximum width of this 

aquifer would be approximately 4 km. 

 

 

Comment [MSOffice11]: Is this Figure 
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3.1.2  Evans Head Flow Calculations (for the Aquifer that drains to Pacific Ocean) 

 The limiting flow rate for groundwater in the side of the aquifer that drains to the ocean is 

319.04 L d-1 m-1. The tables below display the results of Equation 4, for using various fractions of 

the available reclaimed water being injected to the ground. The Evans Head WWTP produces 

2,643,840 L d-1  during summer and dry weather (Richmond Valley Council 2009). The results 

show the theoretical required width of the aquifer required to accommodate a given percentage of 

the reclaimed water flow.  

To Inject (%) QTW (L d-1) Width (m) 
100% 2643840 8290 
75% 1982880 6220 
50% 1321920 4140 
25% 660960 2070 
20% 528770 1660 
15% 396580 1240 
10% 264380 830 
5% 132190 410 
4% 105750 330 
3% 79320 250 
2% 52880 170 
1% 26440 80 

Table 1. Results for Evans Head Aquifer (draining to ocean) 
 

Table 1 is a summary of the calculations for the side of the aquifer that drains to the Pacific Ocean. 

Based on the estimated boundary conditions from section 3.1.2, the section of the Woodburn Sand 

aquifer under Evans Head would be able to store 50% of the reclaimed water from the Evans Head 

WWTP in an ASR scheme. The travel time from the injection site to the shore would be between 

two and nine years (Coffey 1997, p. 21).  

 

 

 

 

Comment [MSOffice12]: This should 
be 3.2.1 as it is a subsection of 3.2. 
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3.1.3  Evans Head Flow Calculations (Aquifer that drains to Richmond River) 

 The limiting flow rate for groundwater in the side of the aquifer that drains to the Richmond 

River is 543.73 L d-1 m-1. Table 2 shows the same calculations data for the section of the Evans 

Head aquifer that drains to the Richmond River.  

To Inject (%) QTW (L d-1) Width (m) 
100% 2643840 4860 
75% 1982880 3650 
50% 1321920 2430 
25% 660960 1220 
20% 528770 970 
15% 396580 730 
10% 264380 490 
5% 132190 240 
4% 105750 190 
3% 79320 150 
2% 52880 100 
1% 26440 50 

Table 2. Results for Evans Head Aquifer (draining to Richmond River) 

 

This side of the aquifer also has a similar hydrogeological profile nNorth all the way to the cross 

section at Rileys Hill, as well as a similar floodplain surface sSouth to the Evans River. Assuming 

that the flow of groundwater in this area is perpendicular to the Richmond River, the width of the 

aquifer in this region could be upwards of 4000 m wide. An ASR scheme utilizing this aquifer could 

therefore , which means that this design could potentially store up to 100% of the reclaimed water.  
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3.2  The Ballina Region Aquifer 

 There are much less data available for the aquifer in the Ballina region, but the 

hydrogeology of the two Ballina and Evans Head regions are similar enough that we canto enable 

make a legitimate reasonable comparison. Figure 7 below shows the location of the relevant aquifer 

which is located that we are targeting in Ballina. It is to the nNorth of Lennox Head, near Lake 

Ainsworth. Out oOf several potential aquifers sites in the Ballina region, this site was the only one 

to showthat has the potential for the storage of large volumes of water. The An obvious downside 

difficulty to with this site is its the distance from the Ballina and Lennox Head WWTPs and 

distance fromto the Ballina CBD. , but tThe scheme could, however, be used to provide water for 

Lennox Head instead of the Ballina CBD.   
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Figure 7. Shows the two cross sections that were analyzed. The horizontal section, #27, is shown in detail in Figure 8. 
Source: Ballina Topo Map. 

 
This large aquifer near Lake Ainsworth is similar in its geologic composition to the aquifer in Evans 

Head. Figure 8 shows that in the section of the aquifer closest to Lake Ainsworth, the geology is 

almost identical to Evans Head, with the Broadwater Sandrock Member as a semi-confining layer 

over the Woodburn Sand.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Shows two cross-sections for the aquifer below Lake Ainsworth. Note that to the South-East there is a very 
similar composition to Evans Head. Source: Drury, 1982. 

 

Information about the direction of flow in this aquifer is not available, but I am assuming based on 

the data from Evans Head that the water flows towards the Pacific Ocean. Though the aquifer is 

close to North Creek, the creek is tidal for nearly the entire extent of the study area, so without more 

information it is not known whether the groundwater flows nNorth or sSouth.  

 

3.2.1  Ballina Region Flow Calculations 

The actual conductivity values for the Woodburn Sand in this case. In a Hydrogeological 

Report (Drury 1982) for the Richmond River Valley, values of 8-60 m d -1 for hydraulic 
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conductivity (K) are cited for various bores containing that penetrate Woodburn Sand. Employing 

the same method used to calculate flow rates in the Evans Head aquifer, the limiting flow rate in the 

aquifer was found to be 305.78 L d-1m-1 width using an hydraulic conductivity value of 8 m d-1, and 

2290 L day-1m-1 width using a conductivity value of 60 m d-1. Based on cross section #26 in Figure 

8, the aquifer is at least 1 km wide, so a good estimate for the limiting flow rate in the aquifer would 

be 305780 L d-1 for K = 8 m d-1 and 2293000 m d-1 for K = 60 m d-1, which is equal to just over 3% 

and 27% of the rate of recycled water produced by the Ballina and Lennox Head WWTPs. There is 

potential for an ASR scheme using this aquifer, but further samples are needed to determine 

whether more precisely what flow rates of water will be able to be injected into the aquifer.  

 

3.3  Safe Yield 

The flow rates calculated in this paper will increase the safe yield of each aquifer, which is 

equal to the average replenishment rate of the aquifer (Bouwer 1978, p. 32). The safe yield of the 

aquifer is the amount of water that can be recovered without causing a long-term decline of the 

water table or piezometric surface. As a result, in times of greater water need it would be possible to 

withdrawal a flow of water equal to the sum of the injection rate and the natural rate of recharge, 

and still be withdrawing within the safe yield. These calculations account only for withdrawal equal 

to the rate of injection though. 

 

 

 

 

 

 

 

 

 

Comment [MSOffice13]: Which 
aquifer(s)? 
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4. DISCUSSION 

 This section will focus on the basic design of an ASR scheme and the associated treatment 

strategies in the aquifers Ballina and Evans Head as discussed in section 3, and the potential 

problems with such a scheme.  

 

4.1  Proposed Scheme (Evans Head) 

 Appendix A contains a map of the proposed scheme at Evans Head. In Evans Head there is 

the possibility of using the aquifer on both sides of the groundwater flow divide, which is marked 

on the map roughly by the dotted black line. Using a single pipeline, the water would be transported 

to a site that sits roughly on the divide, with injection facilities on both sides. There would be two 

recovery points, one at the Evans Head WWTP and one just outside of Woodburn. Placing one of 

the recovery points on the same site as the WWTP reduces the footprint of the project. To bring the 

water to drinking water standards, this project would necessitate pumping to a centralized treatment 

facility that would preferably be located at one of the recovery points. The water recovered could 

possibly be pumped directly into the existing transfer main between Woodburn and Evans Head.  

 

 

4.2  Proposed Scheme (Ballina/Lennox Head) 

 Appendix B contains a map of the proposed scheme in Ballina/Lennox Head. The local 

council has already considered constructing a pipeline for the transport of recycled water pipes to 

location (1) on the map, and north of location (8) in close proximity to the proposed recovery point. 

There are several possibilities for the location of treatment facilities. The effluent from the Ballina 
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and Lennox Head plants could either be treated on site at the WWTP or remotely at the injection 

point. One problem with treatment at the WWTP is that if water were taken from both the Ballina 

and Lennox Hhead plants, then treatment facilities would be required at both plants, substantially 

increasing project costs. The advantage to this scheme would be that the reclaimed water leaving the 

plant and traveling across town would be of a higher quality than the effluent, and could be used for 

irrigation or livestock, as it will be treated to those standards. The recovery point for this water 

would be to the nNorthwest of the Lennox Head CBD, and after additional treatment at the recovery 

site could be connected directly to the municipal water supply.  

 

4.3  Injection Wells 

 The Coffey (1997) report concluded that 8 wells would be needed to handle the peak season 

flows and accommodate the predicted future flow increases. It was also recommended that the wells 

should be spaced at least 50 m apart and drilled to a depth of 22 m to reach the Woodburn Sand 

Aquifer. According to AGT (2002), more analytical modeling is needed to determine the proper 

spacing of the injection wells. These studies are relevant to the design of the injection manifold for 

any ASR scheme at Evans Head because they relate to the Woodburn Sand Aquifer. None of these 

studies included recovery of the injected water, so further work is needed to determine the most 

appropriate recovery system. There have been other studies about ASR in Australia that include 

discussion of recovery systems  (Dillon et. Al 2003), but additional work is needed to design a 

system appropriate for the Woodburn Sand aquifer.  

 

4.4  Environmental Values of Groundwater and End Uses 

 “Environmental values” of water refer to specific guidelines set forthprepared by the 

governments of Australia and New Zealand. The Australian Guidelines for Water Recycling, 2004 

gives six different environmental values of water: aquatic ecosystems, aquaculture, recreation, 

livestock, drinking, and irrigation. The aquifers in this region are not used to obtain drinking water 

for the public (the though private wells may exist) nor for aquaculture. Given the land uses in the 
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Northern New South Wales region, the groundwater could be used for aquatic ecosystems (the 

groundwater flows to the ocean and the Richmond River), recreation, livestock, and irrigation. A 

summary of these guidelines, as well as water quality data for the effluent from each WWTP and 

the ambient groundwater is available contained in Appendix A.  

 

4.5  Treatment Prior to Injection 

The wastewater should be treated to meet the environmental guidelines described above, but 

more importantly must also be compatible with the chemistry of the groundwater. I have 

summarized the environmental values for lowland river, estuarine, and marine aquatic ecosystems, 

irrigation, livestock, and recreational uses as outlined in the Australian and New Zealand Guidelines 

for Fresh and Marine Water Quality (National Resource Management Ministerial Council 2000) 

and the targets for injection water quality as outlined in Coffey, (2002) and reviewed by Dillon 

(2002). The injection water quality targets, drinking water standards, and effluent quality data is are 

shown in Table 3 below: 

Table 3. Water Quality Data Summary 

Parameter Units  

Woodburn 
Sand 

Aquifer 

Effluent 
(Evans 
Head) 

Effluent 
(Ballina) 

Effluent 
(Lennox) 

Injection 
Target Drinking 

Temperature  ˚C 25 25     15 - 35   

Ph   7.03 6.5     6.5 - 7.5 6.5 - 8.5  

Redox Status mV (pe) -180 (-3) 700 (12)     -200   

DO % < 0.1 % 115%     
90 - 

100% > 85 % 
Ca mg/L 30 23     1000   

Mg mg/L 22 4.9     2000   
Na mg/L 110 66     300 180 
K mg/L 8.5 11         
Fe (soluble) mg/L 1.1 0.04     1.5 0.3 
HCO3

-
 mg/L 170 110         

SO4
2- mg/L 21 62     400 250 

Cl mg/L 190 60     400 250 
P mg/L 0.01 0.82 0.39 5.1 0.02   
NH3-N / 
NH4-N mg/L 0.9 4 2 0.04 0.015   

NOx mg/L < 0.01 20 2 2.1 

NO3 + 
NO2 < 

0.1 50 NO3 

BOD mg/L < 2 9 4 7     

TSS/NFR mg/L   25 11 14 1   



25 

Total N mg/L   12 6 4 0.12   
Oil and 
Grease mg/L   0 4 5     
Faecal 
Coliform cfu/100mL   568 100 46 0 0 
Chlorophyll 
A mg/L     74 80     
TDS mg/L 262   1834   1000 500 

Table 3.For the “Injection Target” and “Drinking” categories, unless otherwise indicated, all values are upper limits 
for each criteria. Values marked with a “greater than” (>)  sign indicate that the value is the lower limit. pH is given as 
a range of values. Any values marked with a “less than” sign indicate that the concentration is less than the precision of 

the measuring equipment. 

Though the Injection Target takes into account various guidelines for use, the most 

important criteria to meet are those that match the quality of the ambient groundwater. Since ASR 

with reclaimed water involves injecting reclaimed water into the ground, the public may require that 

the water be treated to drinking level standards prior to injection, though this will vary by location.  

A common problem when injecting water into aquifers is the question of clogging. Clogging 

can occur as a result of precipitation of carbonates and hydroxides, bacterial growth, and siltation 

with colloids and fine silt/clay particles (Coffey 2002, p. 20). Clogging reduces the rate at which 

water can be injected to the aquifer. While there was no additional study for this project on aquifer 

clogging, based on previous studies clogging is not anticipated to be a problem in this ASR scheme. 

In 2002, Coffey concluded that based on their work in similar sand aquifer systems with injected 

wastewater, that clogging would only affect an area less than 1 m away from the injection site 

(Coffey 2002, p. 21).  

 

4.5.1  Redox Potential and Heavy Metals 

The Australian Groundwater Technology (AGT) report on wastewater injection into the 

aquifer at Evans Head concluded that metal precipitates from iron and other heavy metals will not 

be problematic (AGT 2002, p. 16). The concentration of soluble iron in the effluent from Evans 

Head is just 0.04 mg L-1. To reduce the possibility that adverse reactions will take place, the redox 

status of the effluent must be altered. The effluent is in a highly oxidized state (Eh = + 700 mV from 

Evans Head WWTP), while the Woodburn Sand aquifer is in a reduced state (Eh = -180 mV). In a 
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reduced aquifer, oxidized iron species (Fe3+, Fe2O3, FeO) will become Fe2+ and dissolve, thereby 

lowering the risk of clogging the aquifer from iron precipitates.  

 

 

 

4.5.2  Biological Oxygen Demand (BOD) and Dissolved Oxygen (DO) 

The Woodburn Sand Layer under the Broadwater Sandrock Member is under very high 

reducing conditions, and has almost no dissolved oxygen. Adding injectant with relatively high 

BOD (average effluent BOD is approximately 7 mg L-1) compared to the groundwater (<2 mg L-1) 

would remove the remaining dissolved oxygen, thereby enhancing the reducing state of the water, 

and would reduce the potential for precipitation of iron oxides which would might lead to clogging 

(Coffey 1997, p. 30). However, with the addition of effluent with relatively high BOD there remains 

a risk of clogging due to the development of biofilms, or bioclogging.  

A biofilm is a group of microorganisms in which cells are stuckadhere to each other or a 

surface. The development of biofilms cannot be modeled in the same way as chemical clogging, so 

Dillion (2002) advises that a laboratory and field study of how to avoid bioclogging must be done 

before this scheme could be built.  , and tThe AGT (2002) report proposes that the effluent may 

require further disinfection before injection to reduce the potential for clogging by destroying a 

proportion of the microorganisms in the water. Additional testing is needed to confirm the fate of 

injectant with relatively high BOD. 

It is worthy of note that the level of dissolved oxygen for the Evans Head effluent given by 

the most recent reportmost recently reported (Australian Groundwater Technologies 2002) is quite 

high for treated sewage effluent at 10 mg L-1 or 115%. Levels of dissolved oxygen in the effluent 

for the Ballina and Lennox Head plants were not available. Naturally, in a subsequent study the 
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quality of the effluent would have to be very well defined for the design of proper treatment 

strategies. 

 

4.5.3  Nitrogen and Phosphorus 

The Coffey (1997) report concluded that the nitrogen and phosphorus species in the effluent 

would not affect the system’s operation. The AGT (2002) report also concluded that precipitation of 

nitrates would be problematic if they were present at concentrations over 50 mg L-1. However, since 

the reclaimed water must meet the environmental values of water for aquatic ecosystems (lowland 

river, estuary, and marine), irrigation, recreation, and livestock, the concentrations of nitrates must 

be below 10 mg L-1. Currently, the Evans Head, Ballina, and Lennox Head Wastewater Treatment 

Plants (WWTPs) all produce effluent with total nitrogen concentrations of less than 10 mg L-1, 

which is a general limit outlined in the Australian Guidelines for Water Recycling for the level 

above which there is a high risk of clogging. Though the effluent does not meet target levels for 

either total nitrogen and oxidized nitrogen (NO3 and NO2), additional treatment may not be 

required. Nitrogen and phosphorus can be decreased by passing the effluent through a wetland, 

though this may increase concentrations of coliform bacteria. Nitrogen can also be reduced by 

changing the water to reducing conditions and denitrification prior to injection.  

 

4.5.4  Total Suspended Solids (TSS), Oil and Grease 

There is also an increased risk of clogging if the treated effluent contains high levels of Total 

Suspended Solids (TSS). According to Coffey (1997), TSS (identical to NFR) should be below 5 

mg L-1, and possibly as low as 1 mg L-1 to minimize the potential for serious clogging. Based on 

October 2007 – March 2009 averages, TSS levels in the Evans Head WWTP effluent was 25 mg L-1 

and as of September 2009, NFR levels in the Ballina and Lennox Head WWTP effluent was 11 mg 

L-1 and 14 mg L-1 respectively. Oil and grease should also be kept to a minimum to reduce clogging, 

though no quantitative limit has been set. Suspended solids can be removed by chemical 
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precipitation, depth filtration, flotation, microfiltration, microscreening, reverse osmosis, 

sedimentation, and surface filtration.  

 

4.5.5  Faecal Coliform Bacteria 

The AGT (2002) report advised that all effluent should be disinfected prior to injection. 

There are other reports available, such as Dillon (2003) that study the fate of pathogens and other 

bacteria after injection into the aquifer. Faecal coliform levels in the effluent ranges from 46 

cfu/100mL in Lennox Head to 568 cfu/100mL in Evans Head. Even if the effluent is disinfected 

prior to injection, I suspect that disinfection will be required in treatment after recovery to meet 

drinking water standards.  

 

4.5.6  Total Dissolved Solids (TDS) 

Total dissolved solids in the Ballina effluent was 1834 mg L-1, and the target level is 1000 

mg L-1 for injection and 500 mg L-1 for drinking water. Though our target level is 1000 mg L-1, the 

ASR scheme in Bolivar, South Australia used effluent with a TDS level of 1267 mg L-1 without any 

problems. In Bolivar the aquifer was a limestone aquifer, and the ambient groundwater contained 

2006 mg L-1 of TDS compared with 262 mg L-1 in the Woodburn Sand aquifer, so additional study 

is needed to determine any potential problems with high concentrations of TDS in the injectant.  

 

4.6  Post-Recovery Treatment 

 After the water is recovered from the aquifer, it will have to be treated to drinking water 

standards to be added to the public water supply. Save for one case in Namibia, there are no cases in 

the world where wastewater is directly reused as drinking water, but as discussed in the 

introductions, there are several examples of indirect potable water reuse. Groundwater recharge 

schemes are considered indirect potable reuse, and are more common. Since the injected influent is 

treated to match the groundwater as closely as possible, and there will be mixing of the injectant and 
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groundwater, the post-recovery treatment will not differ greatly from traditional drinking water 

treatment for groundwater. The treatment must reduce concentrations of iron, sulfates, chlorine, 

sodium, TDS, and will most likely require disinfection to address public concern over drinking 

recycled wastewater. For potable reuse, the three main concerns in the wastewater would be enteric 

viruses, organic constituents (both industrial chemicals and household products and medicines), and 

heavy metals.  

 

4.7  Salinity 

There is cause for concern if the salinity of the effluent is above 10,000 mg L-1 (17,300 µS 

cm-1 at 25 ˚C in conductivity). All values of conductivity for Woodburn Sand as cited in Drury, 

1982 and Coffey, 1997 are well below this number. Careful analysis of the Woodburn Sand aquifer 

will be required to determine the placement of the recovery points for Evans Head and Ballina that 

are near the ocean, so as to not be affected by salt-water intrusion.  

 

4.8  Additional Treatments  

 In addition to the implementation of appropriate source controls to limit the risk of 

contamination by toxic chemicals, additional treatment measures that may be required prior to 

injection include (Metcalf and Eddy 2003):  

• Primary sedimentation and secondary biological treatment, 

• Chemical coagulation, 

• Clarification, 

• Granular-medium filtration, 

• Activated-carbon adsorption, 

• Removal of volatile organics, 

• Reverse osmosis, 
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• Disinfection. 

It is beyond the scope of this study to determine the most appropriate methods of treatment for each 

of the measures stated above. Once the water is in the ground, it is recommended that the water be 

retained in the ground for at least 12 months, and travel a horizontal distance of 300 – 600 m with a 

direct injection scheme. During the ASR trial in Bolivar, South Australia, the secondary treatment 

was achieved by activated sludge reactors. The water then passed through a water reclamation plant 

which used dissolved air flotation filtration separation and disinfection using chlorine (Dillon et. al 

2003).  

 

4.9  Semi-Confined Aquifers 

 The Woodburn Sand aquifer that is targeted in this study is a semi-confined aquifer. A semi-

confined aquifer is one with a confining layer, or aquitard, that is not impermeable but has a 

hydraulic conductivity that is significantly less than the aquifer. Depending on the relative head 

levels of the unconfined surface aquifer and the semi-confined aquifer, there can either be flow 

upwards or downwards through the semi-confining Broadwater Sandrock Member. Since relatively 

large amounts of water will be injected into the Woodburn Sand Aquifer, I expect there to be a 

positive vertical pressure gradient in the aquifer, and the groundwater will flow upwards. Since the 

basic mathematical analysis of the aquifers assumed that the upper layer was impermeable, 

additional modeling will be needed to account for the flow through this semi-permeable layer.  

 

4.10   Estimated Costs 

Coffey (1997) provides cost estimates for only the injection scheme, including pretreatment, 

monitoring, effluent storage, delivery pipelines, pumping facilities, access roads, landscaping and 

fencing in Evans Head to be $90,000 in 1997 dollars. They project the operating costs, including the 

regular cleaning and redevelopment of bores to be $34,000 per year.  
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Dillon et. al (2003) provides general cost estimates for full ASR schemes in Australia to be 

between 8 and 18 cents/kL of volume recovered per well, which is less than the cost of 12 to 34 

cents/kL for traditional groundwater extraction. This cost takes into account the capital and 

operation costs. The costs in Evans Head would be slightly different, as there could be schemes 

operation on both sides of the groundwater divide which would share some common infrastructure. 

For that reason I have not calculated full cost estimates in Evans Head. In Ballina, there is still 

considerable uncertainty as to the flow that the aquifer will accommodate, so a cost estimate 

calculated based on a flow rate at this point would not be practical.  

Estimated costs for the recycled water treatment plants in Ballina and Lennox Head and the 

pipelines to transport the water are $30 million if the plants are combined and $32.5 million if the 

plants are separate. These costs are only for the plant upgrades, and not the injection or recovery 

systems (Hess & Balandin 2009).  

 

5. CONCLUSIONS 

 I have concluded based on this study that an Aquifer Storage and Recovery scheme to 

augment the public drinking water supply would be feasible in for both Ballina and Evans Head. As 

sources of fresh water may become less reliable with climate change in Australia, recycling treated 

wastewater is a valuable resource that should be exploited. There are many advantages of Aquifer 

Storage and Recovery to accomplish this task, as it is an effective way to reuse reclaimed water 

indirectly to augment drinking water supply and it creates a large reservoir of water for times of 

elevated need.  

Based on my research, there are semi-confined aquifers in both locations that are suitable for 

the flows of reclaimed water that are produced by the respective wastewater treatment plants. As the 

Ballina Council has already expressed a desire to reuse up to 80% of their treated wastewater by 

2013, ASR would be a powerful tool to accomplish this goal. In Evans Head, there exists an aquifer 

of sufficient size and flow properties to accommodate this scheme, but more infrastructure to treat 

and transport the water is needed. In Ballina, I have calculated that the aquifer may be able to 
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accommodate anywhere between 3% and 27% of its treated wastewater. More study is needed to 

determine whether or not this scheme would be feasible, based on the size and flow properties of the 

aquifer. It may be more feasible in Ballina though, as there already exists a plan to increase 

wastewater reuse and to build additional recycled water pipes. If further study finds this project 

feasible, Aquifer Storage and Recovery to recover potable water is a promising tool for meeting the 

water needs in the Northern New South Wales region of Australia.  
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7. APPENDICES 

7.1  Appendix A: Evans Head  
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7.2  Appendix B: Ballina/Lennox Head 
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7.3  Appendix C: Water Quality Data 

Source: AGT (2002); Hess & Balandin (2009);  Richmond Valley Council (2009); Coffey (1997); 
Coffey (2002); Natural Resource Management Ministerial Council (2000) 
 

Table 4. Effluent Water Quality 

   Units 
Woodburn 

Sand Aquifer 
Treated Sewage 
(Evans Head) 

Treated 
Sewage 

(Ballina) 
with DAF 

system 
(2008) 

Treated 
Sewage 

(Lennox) 
Ballina 

Upgrade 
Temperature  ˚C 25 25       
Redox Potential   7.03 6.5       
Eh mV (pe) -180 (-3) 700 (12)       
DO % < 0.1 115%       
Ca mg L-1

 30 23       
Mg mg L-1

 22 4.9       
Na mg L-1

 110 66       
K mg L-1

 8.5 11       
Fe (soluble) mg L-1

 1.1 0.04       
HCO3

-
 mg L-1

 170 110       
SO4

2- mg L-1
 21 62       

Cl mg L-1
 190 60       

P mg L-1
 0.01 0.82 0.39 5.1 0.3 

NH3-N / NH4-N mg L-1
 0.9 4 2 0.04 1.2 

NOx mg L-1
 < 0.01 20 2 2.1 4.8 

BOD mg L-1
 < 2 9 4 7 6 

TSS/NFR mg L-1
   25 11 14 < 1 

Total N mg L-1
   12 6 4 6 

Oil and Grease mg L-1
   0 4 5   

Faecal Coliform cfu/100mL   568 100 46   
Chlorophyll A mg L-1

     74 80 < 1 
TDS mg L-1

 262   1834     
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Table 5. End Use Quality Data 

    
Lowland 

River Estuaries Marine Irrigation Livestock Recreation Target Drinking 

Temperature  ˚C             15 - 35   

Ph   6.5 - 8.0 7.0 - 8.5 8.0 - 8.4 > 6   6.5 - 8.5 7.0 - 8.5 6.5 - 8.5  

Redox Potential mV (pe)                 

DO % 85 - 110 % 80 - 110 % 90 - 110 %       90 - 100% > 85 % 

Ca mg L-1
         1000   1000   

Mg mg L-1
       2000     2000   

Na mg L-1
       

depending 
on crop, 230 

avg   300 300 180 

K mg L-1
                 

Fe (soluble) mg L-1
           30 30 0.3 

HCO3
-
 mg L-1

                 

SO4
2- mg L-1

         1000 400 400 250 

Cl mg L-1
       

depending 
on crop, 350 

avg   400 400 250 

P mg L-1
 0.02 0.03 0.025 0.05     0.02   

NH3-N / NH4-N mg L-1
 0.02 0.015 0.015     10 0.015   

NO3
- / NO2

-
 mg L-1

 0.04 0.015 0.005       0.005   

NOx mg L-1
         

400 NO3, 
30 NO2 

10 NO 3, 1 
NO2 

10 NO3, 1 
NO2 50 NO3 

BOD mg L-1
                 

TSS/NFR mg L-1
                 

Total N mg L-1
 0.5 0.3 0.12 5     0.12   

Oil and Grease mg L-1
                 

Faecal Coliform cfu/100mL         100 150 100 0 

Chlorophyll A mg L-1
 0.005 0.004 0.001           

TDS mg L-1
         

4000 
, 2000 
poultry 1000 1000 500 
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7.4 Appendix D: Definition of Terms 

 

Aquitard- A saturated layer with low hydraulic conductivity relative to adjoining layers.  

Biological Oxygen Demand (BOD)- Empirical measurement that gives the relative oxygen 

requirement of a microbial population in the water sample. 

Effluent- Treated wastewater leaving a wastewater treatment plant.  

Groundwater- Water stored in rock and soil below the Earth’s surface.  

Head-  The head is the height above a standard reference datum that a column of water can 

be supported by its static pressure against the atmospheric pressure. 

Hydraulic Conductivity- A measure of the ease with which water can flow through rock or 

soil. Units of [length]/[time]. 

Hydrogeology-  The study of groundwater. 

Semi-confined Aquifer- Also known as a “leaky” aquifer, it is an aquifer where the 

confining layer has sufficient conductivity to allow some vertical water movement. 
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7.5 Appendix E: ASR Schematic 
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