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Abstract 

 

 The once densely forested dry sclerophyll landscapes of the Midlands of Tasmania are 

now characterized by vast spans of agricultural pasture with intermittent dead and ailing 

eucalypt trees. This landscape changing phenomenon, rural tree dieback, has come into the 

focus of a collaborative research team at the University of Tasmania sponsored by the 

nonprofit organization, Greening Australia. Through the efforts of this team of scientists of 

diverse backgrounds, Greening Australia aims to create an ecologically viable reforestation 

plan for the Midlands. 

 I conducted a pilot study focusing on a 400 ha plot within the Dennistoun Farm 

property in Bothwell, Tasmania in which I analyzed stand structure and substrate geology for 

8 transects selected for 4 different combinations of either forested or unforested land type and 

either sandstone or dolerite substrate. I also analyzed the effect of substrate type on elements 

of tree physiology for Eucalyptus tenuiramis and Eucalyptus viminalis, the dominant eucalypt 

species in the mixed species stands within the area of interest. Finally, I calculated the 

aboveground and soil carbon content and carbon dioxide sequestration for each land type and 

underlying geology of the 400 ha plot of Dennistoun property. 

 The 400 ha plot of Dennistoun Farm property is mostly composed of 248 ha of 

unforested landscapes and only 152 ha of forested landscapes. The forested landscapes on 

dolerite substrate sequestered the most CO2 relative to total area. Mean SLA was significantly 

greater for individuals of the same species on sandstone substrate than on dolerite substrate 

for both E. tenuiramis and E. viminalis in forested landscapes but mean SLA was not 

significantly different between individuals of the same species but different geologies from 

unforested landscapes. The top 5 cm of soil was 4.72% carbon in the dolerite soil from a 

forested landscape. The data collection and analysis methodologies established for this pilot 

study will be expanded across the Clyde River catchment. The results of the continuation of 

study will be submitted to Greening Australia to aid in the creation and establishment of a 

forest regeneration plan, hopefully in the near future. 

 

ISP Topic Codes: 608, 614, 620 

Keywords: Rural tree decline, Carbon analysis, Midlands, Tasmania  
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1. Introduction 

1.1 Overview of Tasmania’s Climate and Forest Types 

The island state of Tasmania is composed of a wide range of environmental 

conditions within its small area, harboring a diverse distribution of vegetation. 

Jackson declares Tasmania’s “inherent variability of environment” yields at least one 

element of each season daily (2005). The Tasmanian Midlands, the region of focus for 

this study, is an inland region subject to rain-shadow from mountain chains both to 

the East and West (Jackson, 2005, p 16). Rainfall in this region takes the form of 

occasional light showers, though the rate of precipitation is greatly exceeded by the 

evaporation rate with a precipitation/evaporation ratio of approximately 0.5 (Jackson, 

2005, p. 17). In the Midlands, average maximum temperatures are less than 10°C for 

two months at an altitude of 450 meters, with a decrease of 0.6°C per 100 meter 

increase in elevation (Jackson, 2005, p. 14).  

The variations in altitude, water availability, and soil fertility create suitable 

conditions for communities falling in to three categories: Austral montane, temperate 

rainforest, and sclerophyll forest (Jackson, 2005, p. 1). The three broad vegetation 

groups can be further divided into seven distinct categories: temperate rainforest, wet 

sclerophyll, alpine and sub-alpine, dry sclerophyll, coastal, moorland or sedgeland, 

and cleared land (Jackson, 2005, p. 1), but the dominant vegetation types can cross 

from one category to another very quickly within small spans of land, making 

classification generalization necessary to some extent. 

 

1.1.1 Dry Sclerophyll Forest 

Dry sclerophyll forest covers 26.3% of Tasmania (Jackson, 2005, p. 4) and 

is the dominant vegetation of Tasmania’s Midlands. Duncan and Brown (1985, in 
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Jackson, 2005) subcategorized dry sclerophyll forest communities by their 

understorey development: grassy, sedgey, heathy, or shrubby. These separate 

classifications illustrate the community responses to environmental factors 

including water availability, drainage, aeration, nutrition, fire frequency, grazing, 

and disturbance (Jackson, 2005, p.4).  

Grassy woodlands are characterized by the nutrient rich igneous dolerite 

soil in low rainfall areas with good drainage (Jackson, 2005, p. 5). Sedgey forests 

or woodlands are predominately above clay-rich or sandy organic soils which 

have poor drainage and aeration yielding high water tables (Jackson, 2005, p. 5). 

Forests with heathy understory development indicate sandy soils with low 

nutrition levels and usually occur in locations with low rainfall and low fire 

frequency (Jackson, 2005, p. 5). Finally, shrubby understoreys are found in forests 

with plentiful water resources and good to moderate drainage (Jackson, 2005, 

p.5). 

The dominant Eucalyptus stands of dry sclerophyll forests are typically 

single-species in Tasmania with clearly defined boundaries, but Reid and Potts 

(2005) write that “mixed stands” occurr in the coexistance of two or more species. 

In a mixed stand, a Monocalyptus subgenus species typically acts as the dominant 

species with a subdominant Symphomytrus species. Mixed stand structure is 

common in the Midlands. 

 

1.2 Forest Degradation in Tasmania 

Despite the rich forest dynamic in Tasmania, there has been a long history of 

forest degradation. Greater comprehension of the many historical and current causes 
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of forest degradation will be necessary for the success of regeneration and 

conservation on both private and public lands. 

 

1.2.1 Aboriginal Influence and European Settlement 

Before European colonization, Aboriginal land use involved the use of 

regular, controlled bush fires. These fires restricted forest development on the 

nutrient rich, basaltic soils (Jackson, 2005, p. 5). These burns reduced the tree 

cover and left seedlings vulnerable to the growth preventative effects of frost and 

grazing (Jackson, 2005, p. 5). 

European settlement and the following removal of Aboriginal people from 

Tasmania’s Midlands resulted in an increase in livestock grazing, perpetuating the 

destruction of native herbs and Themeda, and promoting the growth of the 

“unpalatable” Poa and ending dry eucalypt regeneration (Jackson, 2005, p. 5). 

 

1.2.2 Clearfelling for Logging Industry 

Flanagan (2007) established clearfelling as the complete destruction of a 

forested landscape by the process of tree removal through the use of chainsaws 

and skidders followed by chemical-induced burning of the remaining debris. The 

burning portion of the clearfelling process causes ecosystems to lose important 

structures including hollow trees, fallen logs, semi-fire resistant understorey 

thickets and plants that play important roles in the ecosystems are destroyed or left 

present only in small quantities (McGhee, 2004). Following this land clearing 

technique, native 50-60 year old mountain ash forests are replaced with non-native 

plantations consisting of shining gum, blue gum, or pine species (McGhee, 2004). 

Replacing native forests with plantations leads to an overall decrease in 
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biodiversity and threatens the sustainability of the logging industry (McGhee, 

2004), which has been very influential on the Tasmanian natural environment and 

economy.  

An argument in favor of clearfelling that McGhee (2004) addressed was 

that the cut and burn process “mimics” a natural large scale disturbance like a 

bush fire. This argument has been refuted by substantial scientific evidence 

indicating that the damage from clearfelling far exceeds that of natural fires 

(McGhee, 2004). Though the forestry industry has fallen “under siege” (McGhee, 

2004), the reduction of logging would inevitably lead to job loss. Aging industry 

employees may not easily be trained for new, green collar jobs. While the logging 

industry remains successful and clearfelling remains a cost-effective forestry 

technique, this type of forest degradation will not subside. 

 

1.2.3 Fire 

Jackson (2005) indicates the “direct climate control” of forest growth has 

been mitigated by the prevalence of fire over the past 12,000 years (p. 13). 

Because of frequent firing in the Midlands, where the majority of fires are man-

made instead of lightning-ignited, the open pasture and savannah has been 

maintained and unable to revert to its historical vegetation type, dry sclerophyll 

(Jackson, 2005, p. 14). However, sclerophyll forests are well adapted to survive 

fire. The dominant eucalypt trees regenerate after burns from “massive seed 

stocks” stored in subterraneous capsules (Jackson, 2005, p. 37). The high oil 

content and litter production, and low rates of litter breakdown actually promote 

and prolong fires in dry sclerophyll forests, but they typically have “fire-free” 

periods lasting 80-100 years (Jackson, 2005, p. 37).  
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1.2.4 Agriculture 

The Midlands of Tasmania saw the onset of agriculture at the beginning of 

European settlement. The agricultural boom led to high levels of livestock grazing 

which had adverse implications for many aspects of the environment contributing 

to forest degradation (Yates, Norton, & Hobbs, 2000). Yates, Norton, and Hobbs 

(2000) found some of the forest characteristics associated with high grazing levels 

are decreases in perrenial native cover in favor of annual exotic cover and 

decreased litter coverage.  

In addition directly effecting vegetation growth in dry sclerophyll 

landscapes, Yates, Norton, and Hobbs (2000) concluded that livestock grazing 

also negatively impacts the soil composition, resistance to erosion, and ability to 

absorb water. Davidson and Close (2002) found that soil desiccation has become 

increasingly problematic because the increasing coverage of nonnative species 

prevents water from penetrating the soil. Dry, nutrient poor soil is subjected to 

heightened erosion when it is exposed to wind when it is cleared and plowed for 

planting (Davidson & Close, 2002). To mitigate the effects of agricultural grazing, 

strategies involving resource capture and retention must be employed (Yates, 

Norton, & Hobbs, 2000). 

 

1.3 Greening Australia’s Reforestation Goal 

Nonprofit organization, Greening Australia, aims to reverse forest degradation 

not only in Tasmania, but across the Australian continent. Their mission statement is 

“…to protect and restore the health, diversity and productivity of our unique 

Australian landscapes” (Greening Australia, 2007). Reforestation efforts that are not 

ecologically informed can prove to be unsuccessful and are not likely to provide 
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lasting benefits. With the understanding that landscape restoration must involve 

thorough research, planning, and implementation stages, as well as a post-planting 

care regimen, Greening Australia has the potential to restore a variety of once forested 

landscapes. 

Headed by Dr. David Bowman, and assisted by Lab Manager Scott Nichols 

and Research Fellow Lynda Prior, a long term research program has been established 

at the University of Tasmania to direct Greening Australia’s efforts to increase the 

resilience of significant landscapes. Ultimately, Greening Australia hopes to promote 

resistance to the effects of climate change and use forests for carbon accounting 

(Greening Australia, 2007). The team, funded by Greening Australia and 

incorporating members of diverse backgrounds based in Hobart, aims to evaluate the 

incidence of rural tree decline in Tasmania’s Midlands, focusing on the Clyde River 

catchment. Based on their findings, they will work with Greening Australia to create a 

viable reforestation plan for this area.  

 

1.4 Description of Forest Specific to Clyde River Catchment 

The Clyde River catchment, located in the Midlands of Tasmania, surrounds 

the rural town of Bothwell, approximately 100 km northwest of Hobart. Dominated 

by agricultural land subject to heavy grazing and plowing, this area was once a 

densely forested dry sclerophyll landscape. The dominant species found in the 

catchment’s dry sclerophyll forests are Eucalyptus tenuiramis and Eucalyptus 

viminalis (Reid & Potts, 2005, p. 206). E. tenuiramis inhabits dry soils, typically 

mudstone and dolerite across the southeast of Tasmania. E. viminalis is frequently a 

subdominant species in dry habitats (Reid &Potts, 2005, p. 206). Other common 

eucalypt species in the catchment include Eucalyptus pulchella and Eucalyptus 
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pauciflora in addition to many hybrid individuals exhibiting mixed traits of multiple 

species 

. 

1.5 Incidence of Rural Tree Dieback in the Midlands 

Recently, the phenomenon of rural tree dieback has plagued the degraded land 

as regeneration of native eucalypt trees has slowed.  In addition to dead trees, 

presence of eucalypt trees with dead branches extending beyond apparently healthy 

foliage and new foliage and wood development from epicorms also indicate 

impending rural tree decline (Close & Davidson, Review of rural tree decline in a 

changing Australian climate, 2004). Close and Davidson (2004) have studied this 

pattern across Australia and specifically in Tasmania’s Midlands. This area of 

Tasmania is now “devoid of trees” for reasons including “clearing for agriculture, 

senescence of old trees, premature tree decline,” and the prevention of natural 

regeneration due to grazing (Close, Davidson, Churchill, & Corkery, 2010).  

Close and Davidson (2002) establish that the tree deaths without subsequent 

regeneration that has occurred with increasing frequency in the past 30 years have 

negatively impacted stand structure by causing heightened levels of fragmentation 

through the isolation of ailing trees lacking native understorey.  Due to the habitat 

fragmentation, which may be accentuated with the imminent onset of rapid climate 

change (Hughes, Cawsey & Westoby, 1996), regeneration efforts must occur at both 

“patch” and landscape levels (Yates & Hobbs, 1997).  

 

1.5.1 Difficulties of Rural Forest Restoration 

Yates and Hobbs (1997) concluded more than a decade ago that causes of 

rural tree decline have been established and the research focus must now shift 
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toward creating a viable regeneration plan. Neil Davidson, University of 

Tasmania, and Dugald Close, Cooperative Research Centre for Sustainable 

Production Forestry (2002) have analyzed tree decline in the Midlands of 

Tasmania and continue to conduct research related to reforestation planning.  

Close and Davidson (2002) wrote that many factors including competition, 

grazing, and low seed sets contribute to the difficulties of forest regeneration in 

rural areas. Reforestation efforts were most often plagued by a lack of 

management following the initial seeding sessions (Close & Davidson, 2002). 

Weed control and watering during the first year of growth were highly influential 

in the success of the reintroduced native species in the Midlands (Close & 

Davidson, 2002). Close and Davidson (2002) listed specific recommendations for 

reforestation in drought-prone areas such as the Tasmanian Midlands, but 

concluded that a variety of factors contribute to the success of reforestation 

depending on climatic and geographic features of different forests. Within the 

Clyde River catchment, specific conditions forest plots can be analyzed for these 

climatic and geographic features to increase the probability of achieving high 

levels of forest regeneration. 

 

1.6 Quantifying Forest Health 

The health analysis of the remaining forests within the Clyde River catchment 

will aid in the establishment of Greening Australia’s reforestation guidelines for 

Tasmania’s Midlands. There are different techniques to quantify various measures of 

forest health.  
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1.6.1 Stand Structure and Ground Cover Analysis 

Davidson, et al., (2007) found that native ground cover consisting of 

shrubs, liter, moss, and lichen as opposed to “exotic pasture species” closely 

correlated to healthier trees composition in the corresponding canopy (p.439). 

Close and Davidson (2002) concluded that tree decline is increasingly severe with 

high levels of “native vegetation removal” and development of agricultural 

pastures. The onset of agriculture brought soil compaction, nutrient enrichment, 

competitive non-native pasture species, and understorey alteration (Close, 

Davidson, Churchill, & Corkery, 2010). By quantifying the stand structure and 

corresponding health in addition to the understorey compositon, the health of 

landscapes of different land types and substrates can be assessed.  

Allometric relationships between dbh and biomass can be applied to the 

stand  structure information to determine the total biomass and carbon content for 

designated areas of land. This information is valuable to Greening Australia’s goal 

of combining reforestation plans with carbon accounting (Greening Australia, 

2007). 

 

1.6.2 Tree Physiology: Specific Leaf Area 

Specific leaf area (SLA) is a physiological measurement that is positively 

correlated with many other tree characteristics including photosynthetic capacity, 

dark respiration rate, and leaf N and P contents (Wright, et al., 2004). It is a useful 

measurement for modelling changes in vegetation, carbon, and nitrogen with land-

use and climate change (Wright, et al., 2004).  

Australian plant species typically have lower SLAs because of lower soil 

fertility and moisture (Wright, et al., 2004). Schulze, Turner, Nicolle, and 
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Schumacher (2006) established a positive correlation between δ 13C and  SLA that 

is “highly species and soil type specific.” Wright et al. (2004) in The worldwide 

leaf economics spectrum, states that a nutrient rich soil, like the dolerite soil in the 

Midlands, will yield foliage with higher SLAs and nutrient poor soil, sandstone 

for example, will yield foliage with lower SLAs. Schulze, Turner, Nicolle, and 

Schumacher (2006) further concluded that variation in δ 13C depends on general 

site conditions including fire history and degree of biodiversity. 

 

1.6.3 Soil Analysis 

According to Davidson et al. (2007), soil and understorey distinguished 

between healthy, declining, and poor stands under canonical analysis. Soil 

characteristics including soil nitrogen, pH, and organic carbon content accounted 

for 72% of tree health variation (Davidson, et al., 2007). The soil carbon content 

for a designated area of land can be calculated based on the nutrient percentages 

and bulk soil densities. Soil carbon is an important figure to take into 

consideration before commencing any forest management plans because it could 

greatly impact the success rates of reforestation. 

 

1.7 Benefits of Forest Restoration for Carbon Trading 

Forest clearing results in large quantities of carbon released into the 

atmosphere. Raison et al. (2009) determined that the biomass lost to forest clearing 

between 2006 and 2007 contained 8.6 million tons of carbon. This was a decrease 

from the 2005 to 2006 figure of 11.2 million tons of carbon  (Raison, et al., 2009), 

likely due to a documented substantial decline in tree clearcutting in the same time 

period. According to the calculations of Raison et al. (2009), the biomass cleared from 
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2006 to 2007 will result in the release of 31.55 million tons of carbon. During 

conversion of forested land to agricultural land, carbon is also released from the soil 

in addition to the woody biomass.The conversion of land from forest to agricultural 

pasture or cropland results in a 10% loss in soil carbon in the top 30 centimeters  

(Raison, et al., 2009). 

In addition to Greening Australia’s broad goal of successful landscape 

restoration, the organization has an additional initiative of investigating carbon 

sequestration potential of forested landscapes for Australia’s imminent carbon 

economy (Greening Australia 2007).  The prevention of forest removal could stop 

millions of tons of carbon from being released. The establishment of new forested 

landscapes or the reversion of agricultural land, like that found in the Midlands, to the 

native forest that once dominated the landscape could sequester carbon that has been 

released from other sources.  

 

1.8 Study Goals 

The Dennistoun Farm property in Bothwell, Tasmania can be considered the 

site of a pilot study that will be expanded to different locations within the Clyde River 

catchment in Tasmania’s Midlands. Through stand structure, ground cover, tree 

physiology, and soil nutrient analyses, a data collection and analysis protocol will be 

developed to determine the aboveground and belowground carbon contents of 

different land types on different substrates. Additionally, overall stand health will be 

quantified by substrate type based on stand structure and tree physiological 

measurements. 
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2. Methodology 

2.1 Site Selection 

The Clyde River Catchment surrounding the rural town of Bothwell in 

Tasmania’s Midlands, 100 km northwest of Hobart, is the focus area for this study. I 

surveyed the entire Clyde River Catchment with University of Tasmania Lab 

Manager Scott Nichols, Professor David Bowman, Research Fellow Lynda Prior, and 

CSIRO representative Anthony O’Grady from April 7, 2010 to April 9, 2010. We 

visited 12 zones that University of Tasmania Honours Student, Rowan Harris, 

selected for varying climates and landscape settings using ArcGIS and imported maps 

from the Tasmanian Vegetation Mapping and Monitoring Program (TASVEG) 

database created by the Tasmanian Department of Primary Industries, Parks, Water 

and Environment. 

 From these 12 zones, Nichols and I chose to focus on the Dennistoun Farm 

property, about 10 km from the center of Bothwell, for its accessibility and varied 

land types and underlying geology. According to TASVEG, this property contains 

both dolerite and sandstone substrates beneath a combination of dry sclerophyll 

woodland and agricultural land (formerly dry sclerophyll woodland). Using the 

TASVEG topographic map, we created eight 100 meter transects along constant 

altitudes encompassing 4 different combinations of substrate and land types (Figure 

2.1).  
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Figure 2.1  Map of the Dennistoun Farm property showing underlying geology and 

designated transects. 
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2.2 Data Collection 

The data collection period spanned a three week period between April 12, 

2010 and April 30, 2010. A series of field-based data collection sessions on 

Dennistoun Farm were interspersed with lab-based data collection at the University of 

Tasmania and CSIRO. 

 

2.2.1 Field Data Collection 

Using a handheld GPS unit, Scott Nichols and I located the start and end 

points for each of our eight 100 meter transects previously identified using 

ArcGIS overlays of TASVEG maps. Prior to commencing stand structure data 

collection, we defined a tree health scale by taking exemplary pictures of trees of 

varying health rankings on a scale of 0, indicating a dead tree, to 5, indicating a 

tree of pristine health (Appendix 1).  

To begin data collection at each transect, we completed a preliminary tree 

count and selected a transect width to incorporate 50 trees. In the more intensively 

managed landscapes, there were fewer than 50 trees in close proximity to the 

centers of transects, in which case the transect width was set to a 20 meter 

maximum. Transects in densely forested landscapes had widths of 5 to 10 meters.  

 

2.2.1.1 Transect Data Collection: 20 Meter Intervals 

For each transect, Nichols and I recorded underlying geology, land 

type, aspect, and slope, of each transect as well as dominant vegetation types 

and evidence of any disturbances. We used a 100 meter tape to designate the 

six 20 meter intervals (0 m, 20 m, 40 m, 60 m, 80 m, 100 m) at which we 

would analyze ground and canopy cover and collect soil samples. We 
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quantified ground cover along the 20 meter intervals by completing a layered 

estimate of coverage percentage within in 1 meter radius circle of each of our 

10 predetermined categories: bare ground, rock, grass, other graminoids, 

lomandra, forbs, shrubs, cryptogams, leaf litter, and scats. Using a 

densitometer, we estimated the amount of canopy coverage at each interval. 

At the 20 meter intervals, Nichols and I collected soil samples at 

depths of 0-5 cm, 5-10 cm, 10-20 cm, and 20-30 cm using a split core sampler 

in the softer, sandstone substrate and digging through the harder, dolerite 

substrate with a pick and shovel. We bagged and labeled these samples and 

refrigerated them until they could be processed for nutrient content.  

 

2.2.1.2 Transect Data Collection: Stand Structure 

For each tree within each transect’s predetermined width, Nichols and 

I recorded the tree’s species and location in meters along the transect and from 

the center of the transect. We measured the height and dbh of each tree using a 

hypsometer and dbh tape or calipers, respectively. To quantify the overall 

health of each tree, we used the photographically documented scale ranging 

from 0, dead, to 5, pristine health. 

We recorded length and diameter of any coarse woody debris crossing 

the center of each transect with a diameter of more than 3 cm. Debris with a 

diameter of less than 3 cm was excluded from data collection for carbon 

analysis because its relative carbon content is very low. Finally, we recorded 

the height of any seedlings present within 1 meter on either side of each 

transect (Appendices 2, 3). 
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2.2.1.3 Tree Physiology 

Nichols and I collected foliage and wood samples from the dominant 

Eucalyptus species in the area surrounding one transect of each land use and 

substrate type, remaining within the geologic and land type and boundaries 

defined by TASVEG. Using extendable pruning poles, we clipped the foliage 

and wood samples from the northern side of each tree. Each sample consisted 

of 10 to 15 leaves, depending on individual leaf sizes, and a wood segment 

approximately 5 centimeters long and no more than 2 centimeters in diameter. 

We refrigerated these samples in plastic bags until they could be analyzed for 

specific leaf area and wood density at UTAS and CSIRO labs. 

For each tree from which Nichols and I collected leaf and wood 

samples, we measured the height using a hypsometer, the dbh using dbh tape 

or calipers, and health on the scale of 0-5. We also quantified reproductive 

health of each tree based on presence of flowers, buds, and capsules. We used 

0 to indicate no flowers, buds, or capsules, 1 to indicate some, and 2 to 

indicate many (Appendix 4). We took a picture of each tree and marked the 

GPS coordinates in the handheld GPS unit. 

 

2.2.2 Lab Data Collection: Specific Leaf Area and Wood Density 

At the CSIRO lab facilities, I used a RHIZO scanner and its accompanying 

software to measure the total area of each foliage sample. I measured the dry mass of 

each sample using a beaker on a tared digital scale after drying the samples in an oven 

at 65 °C for 48. To calculate the specific leaf area (SLA), I divided each sample’s leaf 

area by its dry mass (Appendix 4). 
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To calculate wood density I recorded the diameter of each wood sample at the 

point of excision using digital calipers. I removed the bark from each sample and 

found the volume by piercing each wood sample with a needle and submerging it just 

below the surface of the water in a beaker on a tared scale. This displacement method 

of measuring wood volume follows Phytagora’s theorem, under which 1 gram of 

water = 1 cm3 of water because water has a density of 1(Figure 2.2). The weight given 

by the scale is therefore equivalent to the volume of the wood sample. After the wood 

samples dried for 48 hours in an oven at 90 °C, I took the mass of each sample 

(Appendix 5). 

 

 

 

 

 

 

 

 

Figure 2.2  Illustration of water displacement method of measuring wood volume 

following Phytagora’s theorem  (Chave, 2005). 

 

2.2.3 Lab Data Collection: Soil Nutrient Content 

To prepare the soil samples for nutrient content analysis, I removed all fine 

woody debris from the soil by first filtering each sample through a 2 millimeter sieve 

and then sorting through each sample using forceps. I standardized the debris removal 

process by allotting 2 minutes of sorting for each soil sample.  
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The samples had to be homogenized and reduced to an appropriate grain size 

for analysis using a soil grinder. The grinder has two canisters, each of which I filled 

half way with a different soil sample and added two metal grinding balls. I 

programmed the grinder to shake the canisters for 20 seconds. When the samples were 

finished grinding, I transferred a small amount of the ground soil sample to a glass 

vial for storage using a small, plastic weigh boat.  

The soil nutrient analysis machine, the CHNS/O Analyzer, processes the 

samples by burning 14 to 30 milligram quantities in combustible tin capsules at 950° 

C. I transferred a small quantity of soil from each ground sample containing vial in to 

a tin capsule using a scoopula and folded over the top of the capsule with forceps. 

After I weighed each sample on a tared electronic scale to confirm it was within the 

analyzable range, I pressed the capsule in to a small circle. I then reweighed each 

wrapped sample and recorded the mass (Appendix 6). 

 

2.2.3.1 CHNS/O Analyzer Calibration and Processing 

The analysis machine requires calibration before it can accurately 

process soil samples. To calibrate the machine, I ran a sequence of two blanks, 

empty tin capsules, followed by a standard, a 2 to 5 milligram sample of 

acetanilide, then by two calibration 2 to 5 milligram samples of acetanilide, 

one final standard, also a 2 to 5 milligram sample of acetanilide, and a final 

blank tin capsule. If this calibration sequence does not result in a carbon 

content within 0.5 of 17.1 % for the final standard, either the same sequence 

must be repeated, or a different calibration sequence must be run through the 

machine until calibration is achieved.  
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Once the machine is calibrated, each sample is loaded in to tray on the 

machine in a numbered auto-run position, corresponding to the labeled slot in 

a storage container documented on the lab proforma (Appendix 7). The 

machine can process 50 samples in one run, lasting 3 to 4 hours. The output is 

in the form of a data table which gives the soil carbon, hydrogen, and nitrogen 

content in the form of percentages. 

 

2.3 Data Analysis 

The majority of my field data collection process will serve as a pilot study for 

similar or identical data collection across the Clyde River Catchment. I summarized 

the stand structure and ground cover data and looked for trends based on land type 

and underlying geology using Microsoft Excel. I also used the stand structure data 

collected for each transect to establish an estimate of the aboveground carbon content 

of the Dennistoun Property.  To compare the effects of different substrate types on 

tree physiology, I used the foliage and wood samples from varying substrate and land 

use types. Finally, I used the soil nutrient content to calculate the below ground 

carbon content at different depths. 

 

2.3.1 Establishment of Aboveground Carbon Content 

To calculate the above ground carbon content of the 400  hectare (4 km2) 

section of Dennistoun Farm property I organized the transect data into four categories: 

forested dolerite, unforested dolerite, forested sandstone, and unforested sandstone. I 

used the allometric relationship of measured dbh of trees along each transect to their 

aboveground biomass. This relationship varies based on many factors including tree 

and substrate type.  
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2.3.1.1 Application of Allometric Relationship 

For the Dennistoun eucalypt dominated landscape, I used four different 

equations, two created based on samples from nutrient-rich dolerite substrate, 

and two created based on samples from nutrient-poor sandstone substrate. 

Within each substrate classification, I used one equation for general 

aboveground biomass, which I applied to standing trees, and one equation 

specific to branches, which I applied to coarse woody debris.  

 

Table 2.1  Allometric equations relating dbh to biomass in dry sclerophyll forests on 

different substrates  (Keith, Raison, & Jacobsen, 1997). 

 

 

 

 

 

 

 I averaged the aboveground biomasses of the transects with 

corresponding land use and substrate geologies to yield average aboveground 

biomasses for each category. Aboveground carbon content is estimated at 50 

percent of the aboveground biomass, so I multiplied each of the average 

aboveground biomasses by 0.50. To calculate CO2 sequestration, I multiplied 

the carbon content values by the conversion factor of 3.6663, the ratio of CO2 

to C determined by atomic mass. 
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2.3.1.2 Extrapolation to Dennistoun Property 

To apply the aboveground carbon estimates to the entire 4 km2 plot of 

Dennistoun Property of interest, I had to estimate the proportion of land that is 

forested and unforested on both dolerite and sandstone substrates. I defined the 

underlying geologies of the 4 km2 section of land using ArcGIS and TASVEG, 

but I was unable to use the TASVEG land cover data because its 

categorization is too broad for small sections of land. Instead, I used ArcGIS 

to generate regular points at 20 meter intervals over the Dennistoun property 

(Figure 2.3).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3  Map of 4 km2 section of Dennistoun Farm property showing substrate type, 

transects, and generated regular points used for classification. 

By splitting the property in to 100 sections, each containing 100 points, I 

approximated the number of dots falling on of forested land and those on unforested 

land for dolerite and sandstone substrates. Using these dot counts, I calculated the 
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proportion of forested and unforested Dennistoun land by underlying geologies. I 

applied the carbon contents I calculated for each land cover category to the 

Dennistoun property.  

 

2.3.2 Specific Leaf Area and Wood Density 

To compare the effects of landscape setting and underlying geology on the 

specific leaf areas of the Eucalyptus species within the Dennistoun Farm property, I 

grouped the samples by species. For the E. viminalis and E. tenuiramis species, I 

created a pivot table in Microsoft Excel to focus on the tree species, landscape setting, 

and underlying geology. I then used two 2 tailed t-tests to analyze differences in mean 

specific leaf areas of E. viminalis and E. tenuiramis on dolerite substrate to those of 

the same species on sandstone substrate within the same land type categories of 

forested or unforested. 

I chose not to analyze wood densities at this time because of time constraints, 

but UTAS has a copy of the lab proforma and may decide to further analyze wood 

density in the continuation of this study. 

 

2.3.3 Soil Fertility 

To assess the nutrient content of the soil on the Dennistoun Farm property, I 

calculated the bulk soil density of 5 representative transects, covering each land use 

and substrate type. I dried the soil cores at 90°C for 48 hours and then weighed them 

in their 0-5 cm, 5-10 cm, 10-20 cm and 20-30 cm divisions. The volume of the soil 

samples from 0-5 cm and 5-10 cm was 98.17 cm3 and the volume of the soil samples 

from 10-20 cm and 20-30 cm was 196.35 cm3. I calculated the density by dividing the 

dry mass by the volume for each core.   
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I used the outcome of the soil analysis for forested landscape of dolerite 

substrate from the CHNS/O Analyzer to calculate the average soil carbon content at 

each of the four depths sampled using the measurements from the five 20 meter 

intervals. Based on the machine generated carbon content figures, I calculated the 

amount of carbon in metric tons in the Dennistoun property. 

Due to prolonged difficulty with calibration, I was unable to measure the 

nutrient content of the sandstone soil samples. UTAS is storing the sandstone soil 

samples and intends to analyze the nutrient levels and apply the results to the 

Dennistoun property to calculate the total carbon content at each depth interval for 

each land type and substrate classification. 
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3. Results 

3.1 Stand Structure Analysis 

Stands chosen for analysis were composed of various TASVEG defined land 

cover and substrate classifications; each transect had its own distinct demography. 

Transects on both dolerite and sandstone substrates types had wide ranges of height 

distribution achieving a maximum heights of 24 meters on sandstone and reaching 30 

meters in height on dolerite substrate (Figure 3.1). Though the tallest measured 

individual was on dolerite substrate, overall the stands on dolerite substrate had a 

smaller mean height (10.90 m ± 0.56 m) than the stands measured on sandstone 

substrate (15.9 m ± 0.56 m) (t (241) < 0.0001, p < 0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1  Measured tree heights (m) of individuals within the dimensions of transects 

completed on sandstone and dolerite substrates. 
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Based on the data collected from transects on the Dennistoun property, the 

dolerite substrate had many more dead trees than the sandstone substrate. The average 

health of the trees from the sandstone transects including the measurements of the 

dead trees (1.71 ± 0.12) was significantly greater than the average health of the trees 

surveyed on the dolerite transects (1.35 ± 0.13) (t (232) = 0.02, p < 0.05). However, 

when the dead trees were excluded from analysis there was no significant difference 

between mean tree health on sandstone (2.32 ± 0.10) and dolerite (2.51 ± 0.11) 

substrates (t (144) = 0.21, p < 0.05).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2  Health of trees of sandstone and dolerite substrates according to documented 

photographic scale ranging from 0, dead, to 5, pristine health. 
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3.2 Dennistoun Farm Land Estimations  

The totals of the regular points generated using ArcGIS for each of the four 

land type and substrate categories yielded the respective proportions of the 400 

hectare plot of Dennistoun Farm property (Table 3.1). The highest proportion of land 

was unforested (agricultural) landscape on a dolerite substrate (191.08 ha), accounting 

for approximately 48% of the 400 hectare area of interest. The lowest proportion of 

land was unforested landscape on a sandstone substrate (56.80 ha). The forested 

landscapes on dolerite (81.04 ha) and sandstone (71.08 ha) fell between the two 

extremes, but their combined area accounted for only approximately 38% of the total 

area. 

 

Table 3.1  Area of Dennistoun property classified by substrate and land type (ha) 

 

 

 

 

3.2.1 Application of Allometric Relationships 

The aboveground biomasses for each transect varied based on the number and 

size of trees found along the transect and the amount of coarse woody debris found 

intersecting the transect (Table 3.2). Dennis 1 had the greatest aboveground biomass 

(337.80 t/ha) despite having only 3 trees. The average dbh of the 3 trees along this 

transect was 147.33 cm (refer to Peter Brennan, SIT for disk with complete data set). 

The transect with the lowest aboveground biomass was Dennis 2 (133.99 t/ha). 

Dennis 2, the transect with the lowest aboveground biomass, was on a forested 
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landscape while Dennis 1, the transect with the highest aboveground biomass, was on 

an unforested landscape.  

 

Table 3.2  Aboveground biomass and carbon content (t/ha) by transect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The average carbon content figure of each transect type was applied to the 

corresponding land type and substrate classification proportions of the Dennistoun 

Farm property (Table 3.3). The total aboveground carbon content of the 400 hectare 

section of Dennistoun Farm was 43,195.77 metric tons. This value corresponds to a 

total CO2 sequestration of 158,368.66 tons. The unforested land on dolerite substrate, 

the land type and substrate classification with the greatest area (Table 3.1) and 

aboveground biomass per hectare (Table 3.2), accounted for the largest portion of 
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CO2 sequestration. Forested land on dolerite substrate was responsible for more than 

twice as much CO2 sequestration (40810.68 t) than forested land on sandstone 

substrate (19084.34 t) despite a small difference in total area between these two 

classifications (Table 3.1). 

 

Table 3.3  Dennistoun property carbon content and total CO2 sequestered by land type 

and substrate classifications (t). 

 

 

 

 

 

 

Across the entire 400 hectare section of Dennistoun property of interest, the 

carbon content was 107.99 t/ha and the CO2 sequestered was 395.92 t/ha.  

 

3.3 Specific Leaf Area 

In unforested landscapes, formerly dry eucalypt woodlands, the mean SLA of 

E. tenuiramis on dolerite substrate (47.91 cm2/g ± 0.84 cm2/g) was not significantly 

different than that of E. tenuiramis trees on sandstone substrate (45.03 cm2/g  ± 3.79 

cm2/g ) (t (10) = 0.58, p < 0.05). Similarly, E. viminalis mean SLA of samples 

collected from dolerite substrate (47.77 cm2/g  ± 1.37 cm2/g ) were not significantly 

different than those collected of the same species from sandstone substrate (44.94 

cm2/g  ± 2.18 cm2/g ) (t (10) = 0.30, p < 0.05) (Figure 3.3). 
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Figure 3.3  The mean SLA of E. tenuiramis and E. viminalis did not vary by substrate 

type in former woodland landscapes (t (10) = 0.58, p < 0.05), (t (10) = 0.30, p < 0.05). 

 

In forested, dry eucalypt woodlands, the mean SLA of E. tenuiramis on 

dolerite substrate (47.07 cm2/g ±1.76 cm2g) was significantly less than the mean SLA 

of the samples of the same species collected from sandstone substrate (60.03 cm2/g  ±  

2.39 cm2g) (t (9) < 0.01, p < 0.05). Likewise, the mean SLA of E. viminalis samples 

collected from dolerite substrate (47.15 cm2/g  ± 2.02 cm2/g) was significantly less 

than the mean SLA of samples of the same species collected from sandstone substrate 

(60.28 cm2/g  ±  2.43 cm2/g)  (t (13) < 0.01, p < 0.05) (Figure 3.4). 
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Figure 3.4  In dry eucalypt woodland landscapes, the mean SLA of E. tenuiramis and E. 

viminalis differed by substrate type (t (9) < 0.01, p < 0.05), (t (13) < 0.01, p < 0.05). 

 

3.4  Soil Nutrient Levels 

The average carbon percentages decreased with depth of soil sample from 

4.79% C at 0-5 cm to 0.86% C at 20-30 cm in the soil from the forested, dolerite 

transect (Table 3.4). The greatest decrease in mean soil carbon was between the 

uppermost sample, 0-5 cm, and the second depth, 5-10 cm.
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Table 3.4  Average percent carbon at each depth of soil sampled for forested land on 

dolerite substrate.  

 

 

 

 

 

The total soil carbon for the forested landscapes on dolerite substrate 

decreased as sample depth increased despite increasing total soil volumes calculated 

according to the respective bulk soil densities (Table 3.5) 

 

Table 3.5  Soil volumes and carbon contents at 4 depths for forested land on dolerite 

substrate. 
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4. Discussion 

4.1 Stand Structure 

The smaller average height of the trees measured within dolerite transects can 

be accounted for by the young Acacia growth. This new growth is indicative of a 

transition from the eucalypt dominated dry sclerophyll landscape. The presence of 

new growth is important in the degraded landscapes of Tasmania’s Midlands, but the 

lack of eucalypt seedlings along the transects completed in forested landscapes could 

be a preceding characteristic of forest structure change.  Though many degraded 

agricultural landscapes have high protential for natural regeneration of eucalypt 

species, this potential is heavily dependent on management actions (Dorrough & 

Moxham, 2005).   

The high tree counts of eucalypt individuals with health ratings of 0 (dead) on 

the dolerite substrates exemplifies rural tree dieback (Close & Davidson, Review of 

rural tree decline in a changing Australian climate, 2004). The high proportions of 

dead trees alters the overall mean health of these stands, but when the dead trees are 

excluded from analysis, there is no difference in visually quantified tree health on 

dolerite and sandstone substrates. The nutrient levels of these soils within the 

Dennistoun property may not actually be significantly different, but typically dolerite 

substrates have higher nutrient contents than sandstone substrates  (Seymour, Green, 

& Calver, 2007). Further analysis of soil carbon and nitrogen levels could contribute 

to the analysis of the effect of substrate type on stand structure. 

 

4.2 Use of TASVEG Maps to Categorize Dennistoun Farm Property 

The Dennistoun Farm property composition reflects its stated designation of a 

farm land. The majority of the land included in the 400 ha plot has been cleared for 
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agriculture since European colonization. The small proportion of remaining forested 

land may not remain that way for long, as Gunn’s Ltd. has negotiated a deal with the 

property owner to commence forest management. This threat of native forest removal 

and replacement by plantation makes the documentation of the current aboveground 

carbon an important project. The current aboveground carbon content and 

sequestration figures can be compared with measurements taken following plantation 

establishment. It may be too late to preserve the native dry sclerophyll forest 

remaining on the Dennistoun property, but this study site can be used to exemplify the 

before and after of intensive forestry. 

To estimate the proportion of the Dennistoun property falling in to each of the 

land type and substrate classifications, I had to rely on Tasmanian Department of 

Primary Industries TASVEG maps. Although these maps are incredibly useful, they 

were created for the entire state and are more useful for larger scale analysis than for 

the small scale on which I focused. Additional field-based verification of the 

TASVEG maps would assist the creation of more accurate land categorizations. 

 

4.3 Use of Allometric Relationships to Estimate Aboveground Carbon Content 

The use of allometric relationships to calculate aboveground biomass is 

incredibly useful, but to achieve high accuracy in estimations, many different 

equations must be employed. I completed simplified calculations, using equations 

Keith et. al. created based on dry sclerophyll forests on high nutrient dolerite substrate 

and low nutrient sandstone substrate. I also did not differentiate between live and dead 

trees measured because I did not record the number of years since the trees died, 

which is necessary to use equations specific to dead trees. Furthermore, some of my 

measured dbh values, particularly on Dennis 1, which had the highest aboveground 
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biomass but only three individual trees, extended beyond the range of dbh values 

Keith, Barrett, and Keenan (2000) used to create the allometric equation. Because of 

the exponential nature of the allometric relationship, the resulting aboveground 

biomass estimates for the trees with large dbh values were very high. To more 

accurately estimate the aboveground biomass of the trees with large measured dbh 

values, an allometric equation that was created based on a wider range of data values 

should be used. 

The large difference in the aboveground carbon contents of the forested 

landscapes on dolerite and sandstone substrates could be a result of the differing stand 

structures. The forested land on dolerite substrate is more densely covered with 

growth than its sandstone counterpart. Higher nutrient levels in the dolerite substrate 

may also correspond to increased vegetation growth and CO2 sequestration, but soil 

nutrient analysis is necessary to verify the suggested higher nutrient content. 

 

4.3.1 Value of CO2 Sequestration 

Because I did not calculate the annual CO2, I cannot place a dollar value on 

the annual CO2 sequestered in the Dennistoun property. The total CO2 sequestered by 

the Dennistoun property would be worth almost $4 million based on a value of $25/t 

of CO2, which is at the lower range of proposed prices based on a South Australian 

CSIRO report  (Crossman, Summers, & Bryan, 2010). The higher the CO2 

sequestration figures, the greater the economic gain to the property owners. Based on 

the findings of this study, since the CO2 sequestration figures from forested 

landscapes on dolerite soil are so much higher than forested landscapes on sandstone 

soil, reforestation efforts on dolerite substrate would be most successful in terms of 

stand health and economic profit. 
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4.4 Specific Leaf Area 

Recalling that Wright, et al. (2004) wrote that high soil nutrient levels 

correlated positively with SLA, the significant difference in mean measured SLA 

between individuals of the same species, E. tenuiramis or E. viminalis, on dolerite and 

sandstone substrates within the forested Dennistoun property is particularly 

interesting (Figure 3.4). Though the literature established trend would create an 

expectation of a higher mean SLA on the nutrient rich dolerite substrate, the 

demonstrated trend is the exact opposite with a significantly higher mean SLA 

calculated from the individuals of the same species measured from nutrient poor 

sandstone substrate.  

Another remarkable trend is the lack of a significant difference between the 

mean measured SLAs of E. tenuiramis and E. viminalis foliage samples from different 

substrate geologies within the unforested land of the Dennistoun property (Figure 

3.3). Furthermore, the lack of a difference between the E. tenuiramis and E. viminalis 

mean SLA measurements is interesting because SLA is a measurement that should 

differ by species, but does not based on our findings. 

A possible explanation for the deviation from the accepted relationship 

between SLA and soil nutrients is that the sandstone and dolerite soils on the forested 

portion of the Dennistoun Farm property do not have large differences in nutrient 

levels. The CHNS/O Analyzer results for soil carbon, hydrogen, and nitrogen levels 

could assist the analysis of why the results of the SLA analysis based on substrate 

type did not follow the widely documented relationship. 
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4.5 Soil Carbon 

The soil carbon content of the dolerite soil from a forested landscape is 

relatively high. Dolerite soil is typically very nutrient rich, particularly in forested 

landscapes where the soil organic matter is influenced by the presence of leaf litter 

and woody debris (Seymour, Green, & Calver, 2007). The soil closer to the surface 

contains the most carbon, which is why agricultural development involving soil tillage 

leads to the release of large quantities of soil carbon to the atmosphere. Although I 

was not able to analyze the nutrient content of soil collected from sandstone substrate, 

sandstone typically contains less carbon than dolerite. If land must be plowed for 

agriculture, the use of sandstone soil instead of dolerite soil would mitigate the carbon 

release. However, the nutrient rich dolerite soil is probably preferable for maximizing 

agricultural yield. 

Soil carbon content in metric tons is much lower than aboveground carbon 

content for the same landscape and substrate type. For a forested landscape on dolerite 

soil, the total soil carbon content of the top 30 cm, approximately 2,500 t, is much less 

than its corresponding aboveground carbon content of more than 11,000  t. The 

maintenance of healthy forested landscapes is more important in terms of carbon 

sequestration, but the maintenance of healthy forest would likely contribute to soil 

health maintenance. 
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5. Conclusions 

5.1 Summary of Main Findings 

The multifaceted issue of forest use and degradation has plagued Tasmania for 

decades. The phenomenon of rural tree decline has been studied for causation and 

some remediation techniques have been proposed, but the problem persists. The 

sparsely distributed native dry sclerophyll forest remaining in these degraded lands is 

under threat from the unsustainable forestry practices of the logging industry. A 

sustainable reforestation plan that is site and landscape specific and considers the 

established recommendations must be implemented as soon as possible.   

The stand structure analysis and carbon budget established for the Dennistoun 

Farm property in Bothwell is a good evaluation of the remaining dry sclerophyll 

forest typical to the agriculturally-dominated Midlands of Tasmania. The calculation 

process of aboveground and soil carbon contents has some noted potential sources of 

error, but the figures are still valuable to establishing proportional land type and 

substrate type contributions to the total carbon values. Further stand analysis 

involving dating trees within stands of interest and selection additional allometric 

equations following more specific species classifications and incorporating the height 

and age of the trees would yield more accurate numbers for carbon accounting. 

 

5.1.1 Pilot Study Success 

One major success of this study is as a pilot study for Greening Australia’s 

forest regeneration research. The establishment of a concrete methodology and 

creation of the necessary proforma for ground cover and stand structure data 

collection is substantial progress toward the overall goal of creating a viable 

reforestation plan. With the additional data that will be collected across the 
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climatic and altitudinal gradients of the Clyde River catchment, further, more 

detailed stand structure comparisons can be completed. The type of data that has 

been collected further analyzes rural tree dieback and aims to establish a 

connection between quantifiable traits, including specific leaf area, and other 

environmental factors including substrate geology.  

 

5.2 Continuation of Research 

The University of Tasmania will continue to conduct field-based data 

collection across the Clyde River catchment. The same methodologies and field and 

lab proforma will be used for the additional data collection and analysis. This  

expansion of the cumulative data set will enable the research team to determine if 

trends established in the Dennistoun Farm plot are consistent or by what factors they 

vary across the Clyde River catchment. By expanding the data collection to areas 

subject to different environmental conditions along a continuous gradient, further 

comparison and analysis can be made between plant physiology and land use and 

substrate types. With some more time for data collection and analysis at UTAS and 

CSIRO, the Hobart-based research team will be able to help Greening Australia create 

a viable reforestation plan for Tasmania’s Midlands. 

 

5.3 Recommendations for Further Study 

A historical evaluation of land use change since European colonization, 

tracking the human-induced and natural alterations in forest composition could 

contribute significantly to the Greening Australia reforestation plans. Using aerial 

photography when possible and geo-referenced historical maps otherwise, ArcGIS 
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could be used to analyze how land cover has changes. Further analysis could be 

conducted to determine where the most severe land cover changes occurred and what 

caused these changes. 

Based on the findings of the UTAS and Greening Australia research team, a 

pilot study could be created to test the suggested reforestation regime before its 

widespread implementation. The results of this small-scale study could be used to 

verify that the maximum levels of success will be achieved through the proposed plan, 

avoiding wasted financial resources and potential land degradation from failed 

reforestation attempts. 

Some landowners within the Clyde River catchment have initiated relatively 

small scale forest regeneration projects. Many of the properties in the Midlands have 

been owned and managed by the same families for decades, and the landowners 

therefore have great knowledge of the land. These people could be extremely valuable 

references for UTAS and Greening Australia. With landowner permission, the UTAS 

and Greening Australia research team could complete stand structure, tree physiology, 

and soil nutrient analysis over the next few years. These regenerative plots can be 

tracked over time for vegetative success. In the more distant future, assuming some of 

these privately owned plots experience high levels of reforestation success, they could 

be carefully analyzed for the factors most significantly contributing to the high 

success rates.  

With the continuation of the ecologically informed contributions to the 

reforestation goals of Greening Australia, the hope for the future of Tasmania’s dry 

sclerophyll Midlands has promise. The more informed landowners become about the 

causes and effects of rural tree decline, the more likely they may be to resist the 
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promised financial benefits of allowing forestry in favor of the long term health and 

viability of their land.  
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