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Abstract 

Lateralization, or behavioral asymmetry, is the tendency to favor one side of the 

body over the other, and exists in humans and animals including in mammals, birds, and 

fishes. It has been found to increase performance in certain behaviors such as escape 

from predators by lowering reation time. Lateralization has predominantly genetic bases, 

but can also be influenced by environmental factors. For example, lateralization has been 

observed to increase in populations of fish subject to high predation pressure as it 

decreases their response time to predatory attacks. Parasitism may also have important 

effects on lateralization. In particular, increased drag from large ectoparasitic isopods is 

thought to reduce swimming performance of fishes and increase vulnerability to 

predation. Here, we examined whether fish infected with an ectoparasite compensate for 

a potential decrease in their swimming performance by increasing their degree of 

lateralization. Specifically, we examined the bridled monocle bream (Scolopsis 

bilineata), which is parasitized by a large ectoparasitic cymothoid isopod, Anilocra 

nemipteri, on the Great Barrier Reef.  

In order to gain insight into host-parasite interactions, we quantified the 

prevalence of infections in the population of S. bilineata at Lizard Island, on the Northern 

Great Barrier Reef, Australia. We then examined the effect of A. nemipteri on 

lateralization patterns in S. bilineata by comparing the turning behavior of unparasitized 

and parasitized individuals. We found no preference for right or left turns at the group 

level, but individuals were lateralized in all groups. Individuals were significantly more 

lateralized in the parasitized group than in the unparasitized group, and removing 

parasites from infected individuals decreased lateralization, suggesting that parasitism by 
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A. nemipteri has a significant effect on turning behavior. As lateralization has been 

shown to reduce reaction time in fish and increase the probability of escaping from 

predators, S. bilineata may compensate for lower fitness and swimming performance due 

to infection by A. nemipteri by increasing its turning preference to one side.  
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1. Introduction 
 

1.1 Ectoparasitism in Coral Reef Fishes 
 
 Cymothoid isopods are a widespread family of blood-feeding crustaceans that 

parasitize both marine and freshwater fishes in South America, Asia, Africa, and 

Australia (Trilles et al. 2011, Bunkley-Williams and Williams 1998). Cymothoids make 

up about 62% of isopods associated with fishes (Bunkley-Williams and Williams 1998). 

These abundant and relatively large (4.2 – 23.0 mm) ectoparasites either attach 

themselves to a fixed spot on their hosts using hooks located at the ends of their legs, or 

move around freely on the host’s body (Bunkley-Williams and Williams 1998, Grutter 

1994). 

 Isopod ectoparasites have a variety of negative effects on coral reef fishes. They 

are responsible for causing large wounds, stunted growth, and sometimes death in their 

hosts (Bunkley-Williams and Williams 1998). A study by Östlund-Nilsson et al. (2005) 

found that parasitized cardinal fish Cheilodipterus quinquelineatus had decreased aerobic 

swimming endurance and higher energy needs compared to unparasitized fish. The 

parasites also affected the stability of their host requiring them to expend more energy 

just to keep upright (Östlund-Nilsson et al. 2005). Similarly, a study by Grutter et al. 

(2011) found an overall decrease in the swimming performance of juvenile damselfish, 

Pomacentrus amboinensis, parasitized with gnathiid isopods. Specifically, parasitized 

individuals had a lower critical swimming speed than unparasitized fish, and a higher rate 
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of oxygen consumption (indicative of a higher metabolic rate) in lab studies, and a lower 

rate of survival to adulthood in the wild. 

 These parasites were also found to stunt growth and increase mortality in another 

damselfish, Chromis nitidia (Adlard and Lester 1994) as well as in juveniles of three 

cardinal fishes (Fogelman and Grutter 2008). Parasitism by cymothoids has also been 

found to decrease fecundity in adults (Adlard and Lester 1994, Fogelman et al. 2009). 

Other sub-lethal effects include anemia (Adlard and Lester 1995) and tissue damage 

(Bunkley-Williams and Williams 1998) in hosts. 

1.2 Background on Lateralization 
 
 Lateralization refers to the tendency of an individual to favor one side of the body 

over the other (Reebs 2008), and includes specialization in sensory, motor, and/or 

cognitive abilities. This “handedness” can occur at the level of the individual, where an 

individual shows a non-random preference for one side of its body over the other, or at 

the level of the population, when more than 50% of the individuals in a group show a 

non-random preference in the same direction (Bisazza et al. 1998b). The strength of 

lateralization at these two levels can be calculated using a lateralization index (Bisazza et 

al. 1998a, Dadda et al. 2010, Domenici et al. 2012). The relative lateralization index (LR) 

quantifies the degree to which a particular direction is preferred, while the absolute 

lateralization index (LA) quantifies the degree of lateralization irrespective of the 

direction preferred. A LR that deviates significantly from 0 suggests that a population has 

a strong directional preference whereas high values of LA suggest that the direction of 

preference is not important, but that individuals are likely to demonstrate highly 

lateralized behavior. 
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While early studies of lateralization often focus on sensory and cognitive abilities, 

behavioral asymmetries at the individual and population level have increasingly become 

of interest to researchers (Bisazza et al. 1998b). Lateralization affects a wide range of 

behaviors in numerous taxa, including birds (Rogers 2004, Zucca and Sovrano 2008), 

mammals (Ehret 1987, McGrew and Marchant 1999, Phillips et al. 2003, McGreevy and 

Rogers 2005), fishes (Bisazza et al. 1998a, De Santi et al. 2001, Bisazza and Dadda 2005, 

Bisazza et al. 2007, Brown et al. 2004, Brown et al. 2007, Dadda et al. 2010, Domenici et 

al. 2012), and invertebrates (Glovind and Blundon 1985). For example, quails showed a 

preference for using their right eye when viewing unfamiliar conspecifics and their left 

eye when viewing familiar companions (Zucca and Sovrano 2008). Similarly, 

chimpanzees demonstrate preferential hand use when termite fishing (McGrew and 

Marchant 1999). 

 It can be argued that lateralization has some disadvantages, as relevant stimuli 

have an equal chance of occurring on either side of the body (Vallortigara and Rogers 

2005). However, many studies have found that lateralized individuals show superior 

performance in a variety of behaviors. In fishes, lateralization has been found to improve 

schooling performance (Bisazza and Dadda 2005), multitasking (Dadda and Bisazza 

2006), and escape performance (Dadda et al. 2010). Lateralization is known to have a 

genetic basis (Bisazza et al. 2007, Brown et al. 2007). However, environmental factors 

such as high predation (Brown et al. 2007) have also been shown to promote 

lateralization.  

1.3 Justification for Current Study 
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Although coral reef fishes are known to be affected by cymothoid isopod ectoparasites 

(Adlard and Lester 1994, Adlard and Lester 1995, Bunkley-Williams and Williams 1998, 

Fogelman and Grutter 2008, Östlund-Nilsson et al. 2005, Grutter et al. 2011), and to 

exhibit lateralization in turning direction (Domenici et al. 2012), the effects of parasitism 

on lateralization behavior has never been studied. 

 The bridled monocle bream (Scolopsis bilineata) is a ubiquitous member of coral 

reef communities on the Great Barrier Reef (Boaden 2011), and can be parasitized by a 

large cymothoid isopod Anilocra nemipteri. However, the effects of parasitism on this 

species are only just beginning to be studied (Binning and Roche in prep), and current 

quantification of the prevalence of parasitism by A. nemipteri in populations of S. 

bilineata in the Great Barrier Reef is lacking. Apart from the novelty of studying 

parasitism in Scolopsis bilineata, we chose to study this species because of the size, 

survivability, and ease of manipulation of its parasite, Anilocra nemipteri. 

 In this study, we estimated the prevalence of parasitism in a population of S. 

bilineata around Lizard Island, northern Great Barrier Reef, Australia. We also 

investigated the effects of parasitism on lateralization in S. bilineata by comparing the 

turning behavior unparasitized and parasitized individuals. Predation has been shown to 

cause increased lateralization in fish (Brown et al. 2004, Brown et al. 2007). As another 

costly environmental pressure, we expected parasitism to have an effect on lateralization 

as well. Lateralization has been shown to help lower reaction time and improve escape 

performance in fish (Dadda et al. 2010). Thus, we hypothesized that parasitized 

individuals are more lateralized, as lateralization may help improve the escape abilities of 

infected fish who may suffer from decreased swimming performance. 
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2. Methods 
 

2.1 Animal Collection and Care 
 
 Parasitized and unparasitized Scolopsis bilineata were collected from various 

reefs in the Lagoon at Lizard Island, Queensland, Australia, between the middle of March 

and the end of April 2012 (Figure 1). 
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Figure 1. Map of Lizard Island, northern Great Barrier Reef, Australia.  
 
 

2.2.1 Abundance Transects 
 
 To estimate the prevalence of cymothoid ectoparasites in populations of S. 

bilineata, data on the size and condition of individuals was recorded on snorkel along 50 

x 4 m belt transects (n = 3 to 7 per site) on 12 different reefs around Lizard Island. Data 

was collected by two observers swimming at a constant speed holding a tape between 

them, each looking within 2 m on either side of the transect tape. Four variables were 

recorded for each individual observed: size (total length), color phase (juvenile or adult), 
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condition (unparasitized, parasitized, scarred from past parasite), and side of attachment 

(left or right for parasitized or scarred individuals) (Figure 2).  

Figure 2. Conditions of Scolopsis bilineata recorded in the field: a) unparasitized adult 
color phase, b) juvenile color phase, c) parasitized, d) scarred from past parasite. 
 
Observers practiced estimating fish lengths to the nearest 1 cm prior to collecting the 

data.  

2.2.2 Data analysis 
 
 I calculated the relative frequency distributions of S. bilineata lengths for 

unparasitized, parasitized, and formerly parasitized, as well as all three groups combined 

using histograms with bin sizes of 3 cm. Mean (± SE), median, and mode of fish length 

was calculated for each group to compare the size of fishes in each group (unparasitized, 

parasitized, formerly parasitized). The total number of unparasitized, parasitized, and 

formerly parasitized individuals out of all the S. bilineata observed in the study was 

a) b) 

c) d) 
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determined, both as the number of individuals and as a percentage of all S. bilineata, and 

separately for adults only and juveniles only. 

2.3 Measurements of Experimental Fish 
 
 Information was recorded on the total length, standard length, body depth, body 

width, and mass for all fish tested. For the parasitized fish, the length and width of the 

parasite was also recorded. Measurements were taken by sealing the fish in a plastic bag 

with enough water to breathe, but little enough that the fish lay flat on its side. The fish 

(and parasite) were then measured to the nearest tenth of a mm using calipers or a ruler to 

the nearest mm if the fish was too long for the calipers. Mass was measured by emptying 

the water from the plastic bag, quickly weighing the fish in the bag, then replacing the 

fish in water and weighing the bag alone. The mass of the fish was then calculated as the 

difference between these two measurements. 

2.4.1 Detour Test 
 
 In order to test for lateralization in parasitized and unparasitized S. bilineata, the 

fish were subjected to a detour test (Bisazza et al. 1998a, Bisazza and Dadda 2005, 

Dadda et al. 2010, Domenici et al. 2012). The apparatus consisted of an opaque white 

tank (102 cm x 51 cm x 50 cm, length x width x height) with a runway in the middle (70 

cm x 15 cm, length x width). An opaque white barrier (25 cm x 16.5 cm, length x height) 

was positioned 12 cm from the end of the runway, oriented perpendicular to the runway 

(Figure 3). 
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Figure 3. Schematic representation of the apparatus used for the detour test. During each 
trial, the holding barrier (HB) was raised, allowing the fish (F) to swim down the 
runway (R). At the end of the runway the fish faced a barrier (B), which the fish 
would turn either left or right to get around. The direction chosen was recorded. 

 
 Water height in the tank was maintained at 13 cm. To avoid bias in the maze, different 

orientations of the maze were tested prior to beginning the detour tests. The orientation 

used in the experiment was determined when there was no difference in the turning 

behavior of a trial individual regardless of the orientation of the maze. 

 Prior to each test, a single fish was introduced into the starting point of the 

runway and held there with an opaque barrier. The fish was left for at least 10 minutes to 

adjust to the environment. During each trial, the holding barrier was raised and the fish 

was gently guided down the runway using a plastic paddle. At the end of the runway the 

fish faced the barrier and had to decide to turn right or left to get around the barrier. Once 
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the fish made a choice, and turned, the direction chosen was recorded on a slate. The fish 

was then guided back to the starting position of the runway and the holding barrier was 

lowered. The fish was given at least 2 minutes rest between trials. Ten trials were 

conducted per fish. A total of 41 S. bilineata were tested (n = 25 unparasitized, n = 16 

parasitized).  

In order to test whether the turning behavior of parasitized S. bilineata changed 

when the parasite was removed, we removed the parasites from all the parasitized fish. 

To remove the parasite, a fish was put in a plastic bag with water and, holding the fish in 

one hand, forceps were used to grasp the tail of the parasite and pull it gently towards the 

head of the fish. The forceps were then used to unhook the legs of the parasite from the 

fish tissue, detaching the parasite from the fish. The fish were then retested in the detour 

maze after giving them 24 hours to adjust to the absence of the parasite (n = 16 parasite 

removed). 

 In order to compare fish in their right-left preference, we calculated a relative 

lateralization index (LR) according to the following formula (Bisazza et al. 1998a, Dadda 

et al. 2010, Domenici et al. 2012): 

[(Turns to the right – Turns to the left)/(Turns to the right + Turns to the Left)]*100 

The LR index classified the turning preference of the fish between the extremes of 100 

(10 out of 10 turns to the right) and -100 (10 out of 10 turns to the left), with a LR index 

of 0 indicating equal turns to the left and right. 

 To compare the lateralization of the fish irrespective of the direction of 

preference, an absolute lateralization index (LA) was calculated as the absolute value of 

the LR (Dadda et al. 2010). Thus, a LA of 100 corresponds to 10 out of 10 turns in a 
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particular direction (but does not indicate whether the fish showed preference for turning 

right or left), and a LA of 0 corresponds to equal turns to the right and left. We considered 

fish with LA ≥ 60 (corresponding to at least 8 out of 10 turns in one direction) to be 

highly lateralized (Brown et al. 2007). The distributions of all three treatment groups 

(unparasitized, parasitized, and parasite removed) were compared to a theoretical random 

binomial distribution with n = 25, p = 0.5, and q = 0.5 (a 50% probability of turning left 

or right) (Domenici et al. 2012). 

2.4.2 Data analysis 
 
 All analyses were done using R v2.11.1 (R Development Core Team). 

 2.4.2.i. Data Analysis for LR 

 
  The lateralization data for unparasitized, parasitized, and parasite removed 

groups was checked for significant departures from normality using a Shapiro-Wilk test. 

Since LR data was not normally distributed, LR of unparasitized, parasitized, and parasite 

removed groups were compared using Wilcoxon signed-rank tests (non-parametric t-

tests). These tests were used for all groups for consistency even though the parasite 

removed group had a normal distribution. Kruskal-Wallis tests (non-parametric analysis 

of variance) were used to test for differences in LR between the test groups 

(unparasitized, parasitized, and parasite removed) and the random binomial simulation. 

 2.4.2.ii Data Analysis for LA 

 
  Absolute indices of lateralization (LA) were compared between 

unparasitized, parasitized, and random binomial simulation groups using a Kruskal-

Wallis test. LA of individual groups were compared to the LA of the random binomial 
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simulation using Wilcoxon signed rank tests. A paired Wilcoxon signed rank test was 

used to compare the LAs of the parasitized and parasite removed groups due to the 

repeated measures of testing the same individuals under two treatments (parasitized and 

parasite removed). 

 2.4.2.iii Other Data Analysis 
 
  Chi-squared tests of independence were used to determine if parasitized 

fish were lateralized to the same side as their parasites, both among all parasitized fish (n 

= 16) and only among fish considered heavily parasitized (LA ≥ 60, n = 13).  

 

3. Results 
 

3.1 Parasite Abundance 
 
 Transect surveys covered a total surface area of 79,300 m2. The average density 

of S. bilineata around Lizard Island is 0.005 fish/m2. Transect surveys revealed that the 

majority of S. bilineata observed were unparasitized (Table 1). 

 

Table 1. Abundance of unparasitized, parasitized, and formerly parasitized S. bilineata 
across 12 reefs at Lizard Island, Australia. 

    Number of Individuals [% of Population] 

  

Number of 
Individuals 
Observed Unparasitized Parasitized Parasite Removed 

All Fish 427 363 [85.0] 17 [4.0] 47 [11.0] 
Adults Only 383 324 [84.6] 12 [3.1] 47 [12.3] 

Juveniles Only 44 39 [88.6] 5 [11.4] 0 [0.0] 
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 Parasitized S. bilineata tended to be smaller (median length: 12 cm, mode length: 

12 cm) than unparasitized (median length: 15 cm, mode length: 16 cm) and formerly 

parasitized fish (median length: 15 cm, mode length: 15 cm) (Figure 4). 
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Figure 4. Relative frequency distribution (% of population surveyed) of S. bilineata size 
in (a) unparasitized, (b) parasitized, (c) formerly parasitized, and (d) all fish.  

 



21 

The mean lengths (cm) ± SE of S. bilineata were 14.11 ± 0.17, 10.7 ± 0.74, 14.89 ± 0.25, 

and 14.06 ± 0.16 for unparasitized, parasitized, formerly parasitized, and all fish, 

respectively. 

3.2 Lengths of Fish and Parasites Tested 
 
 The average total lengths (cm ± SE) of the unparasitized and parasitized fish 

tested were 14.73 ± 0.3 and 11.85 ± 0.57, respectively. The average parasite length (cm ± 

SE) was 1.99 ± 0.15. On average, the parasites were 16.4% the total length of the fish. 

3.3 Lateralization 
 
 We found no preference for right or left turns at the group level in any of the three 

groups of S. bilineata tested (Wilcoxon signed-rank test: unparasitized, p = 0.446; 

parasitized, p = 0.444; parasite removed, p = 0.252; random simulation, p =0.70). There 

was also no significant difference in LR between the S. bilineata groups and the random 

binomial simulation (Kruskall-Wallis test: chi-squared = 2.6488, df = 3, p = 0.449). Mean 

LR values ± SE were -10.4 ± 13.47 (unparasitized), 11.25 ± 21.68 (parasitized), 16.25 ± 

14.29 (parasite removed), and -6.4 ± 6.9 (random simulation) (Figure 5). 
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Figure 5. Relative lateralization index (LR, mean ± SE) in unparasitized (Unparasitized; 
n=25), parasitized (Parasitized; n=16), and parasite removed (Removed; n=16) 
Scolopsis bilineata, and a random simulation (Random; n=25) based on 10 detour 
test trials per fish with a 0.5 probability of turning left or right. Positive values 
indicate preference for right turns, and negative values indicate a preference for left 
turns. Extreme values of -100 or 100 indicate 10 out of 10 turns in the same 
direction.  

 
The distribution of LR was non-normal for the unparasitized (Shapiro-Wilk test: p = 

0.029) and parasitized (Shapiro-Wilk test: p = 0.002) groups, and normal for the parasite 

removed group (Shapiro-Wilk test: p = 0.254) and the random binomial simulation (p = 

0.5) (Figure 6). 
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Figure 6. Relative frequency distribution (% of population tested) for LR in (a) 
unparasitized, (b) parasitized, and (c) parasite removed Scolopsis, and (d) a random 
simulation for fish with equal chances of turning left and right. Positive and negative 
values indicate prevalence of right and left turns, respectively, with extreme values 
of |100| indicating 10 out of 10 turns in the same direction. 
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We found significant differences in the absolute lateralization index (LA) among 

groups (Kruskall-Wallis test: x2 = 24.997, df = 2, p = 3.732e-06) (Figure 7). 

 

Figure 7. Absolute lateralization index (LA, mean ± SE) in unparasitized (Unparasitized; 
n=25), parasitized (Parasitized; n=16), and parasite removed (Removed; n=16) 
Scolopsis bilineata, and a random simulation (Random; n=25) based on 10 detour 
test trials per fish with a 0.5 probability of turning left or right. LA calculated as |LR|, 
thus indicating the degree of lateralization irrespective of the direction preferred. 

 

 LA of the parasitized and unparasitized groups were significantly higher than the LA of 

the random binomial simulation (Wilcoxon signed rank test: p < 0.01 and p < 0.01, 

respectively). Additionally, LA was higher in the parasitized group than the unparasitized 

group (Wilcoxon signed rank test: p = 0.026). We did not adjust for multiple tests when 

comparing the unparasitized group, parasitized group, and random binomial simulation 

because there were only three comparisons. When we compared LA between the 

parasitized and parasite removed groups, the LA of the parasitized group was higher than 

that of the same individuals when the parasites were removed (paired Wilcoxon signed 
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rank test: p = 0.01). The LA of the parasitized group and the parasite removed group were 

also both higher than the random binomial simulation (Wilcoxon signed rank test: p = 

0.008 and p = 2.834e-06 respectively). 

 Parasitized S. bilineata showed no preference for turning in the direction of their 

parasite (chi-squared test of independence: χ2 = 0.254, df = 1, p > 0.1), even if the fish 

were highly lateralized (LA ≥ 60, n = 13; chi-squared test of independence: χ2 = 0.008, df 

= 1, p > 0.5). 

 

4. Discussion 
 

4.1 Abundance and Distribution of Cymothoid Parasites in S. bilineata 
 
 Parasitism by Anilocra nemipteri appears to be fairly rare in S. bilineata, affecting 

only about 4% of the fish population. A study by Grutter (1994) quantified the abundance 

of different types of parasites in seven different fish species at Lizard Island, including S. 

bilineata. Of the 13 parasite categories observed in S. bilineata, isopods such as A. 

nemipteri were the least common, at less than one parasite per fish on average (Grutter 

1994). Isopod parasites were also the least common parasite group to infect the six other 

fish species studied, with less than one parasite per fish (Grutter 1994). The isopods were 

also by far the largest of all the parasites observed by Grutter (1994) around Lizard 

Island. Due to the relatively low occurrence of these parasites on S. bilineata and other 

fishes found by Grutter (1994), and the low prevalence quantified in this study, it is likely 

that Anilocra nemipteri parasites carry a very high cost to the host, and thus only a small 

number of fish are able to sustain the parasitism. This has implications for the role of 
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these parasites in the ecology of S. bilineata, as the high cost of parasitism would select 

for strong individuals that can survive despite the costs of parasitism. Further 

quantification of parasite prevalence in other coral reef fish species as has been done in 

this study would provide important comparisons among parasites and their relative costs 

to their hosts. 

 The size distribution of parasititzed individuals relative to unparasitized 

individuals in the field suggests that the parasites rarely attach to full-grown adults. 

Rather, it seems that the parasites prefer to attach to young fish and that the parasite and 

fish grow together. This is supported by prevalence of larger individuals with scars from 

previous parasitism, as well as the higher frequency of parasitism (11.4%) in juvenile S. 

bilineata compared to adults (3.1%). 

 The higher infection rates in juveniles compared to adults also suggests that the 

parasites may contribute to some mortality in juvenile fish. Grutter et al. (201!) studied 

the effects of a gnathiid ectoparasite, another isopod ectoparasite, on the damselfish 

Pomacentrus amboinensis and found that parasitized juveniles had a lower rate of 

survival to adulthood than unparasitized fish in the wild, most likely due to decreased 

swimming performance which made them more susceptible to predatation (Grutter et al. 

2011). This study and ours suggest an ecologically important role of parasitism in the 

survivorship of young coral reef fishes. By placing an extra selective pressure on juvenile 

fish, these ectoparasites may influence the future fitness of the host species by selecting 

for strong individuals that can survive to adulthood despite the costs of being parasitized. 

4.2 Effect of Parasitism on Lateralization 
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4.2.1 Relative Lateralization Index (LR) 
 
 Although we found no preference for left or right turning at the population level, 

there was lateralization at the individual level in all test groups of S. bilineata. This was 

consistent with a study by Domenici et al. (2012), which found no group-level preference 

for left or right turning in another coral reef fish, Neopomacentrus azysron. Thus a lack 

of right or left turning preference at the group level in S. bilineata is most likely a 

genuine characteristic of the species and not the result of experimental error. 

4.2.2 Absolute Lateralization Index (LA) 
 
 Both the unparasitized and parasitized fish groups had mean absolute 

lateralization indices (LAs) significantly higher than the random binomial simulation, 

indicating the occurrence of lateralization in both groups. However, the parasitized group 

had a mean LA significantly higher than the unparasitized group, indicating that the 

parasitized fish were more highly lateralized than their unparasitized conspecifics. 

 Further, when the parasitized fish were retested after having their parasites 

removed, the mean LA was significantly lower than when those same individuals had 

parasites. The group remained lateralized after the parasites were removed, but there was 

a significant decrease in laterality with the loss of the parasite, such that these individuals 

were no longer different from the unparasitized fish. Because the parasitized group had 

the highest LA of any of the test groups, and the LA decreased when the parasites were 

removed, it appears that the parasitism causes an increase in lateralization. 

The higher degree of laterality in parasitized S. bilineata could arise as a way to 

help the fish compensate for the decreases in fitness caused by the parasite. Studies on 

parasitism in other fish species have found many negative effects of parasitism on fish 
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fitness, including lower critical swimming speed (Grutter et al. 2011), reduced swimming 

endurance and stability (Östlund-Nilsson et al. 2005), and increased metabolic rate 

(Grutter et al. 2011, Östlund-Nilsson et al. 2005) which results in higher energy demands.  

A recent study found that in S. bilineata, parasitized individuals have lower critical 

swimming speeds, higher resting metabolic rates, and lower aerobic swimming capacities 

than unparasitized individuals (Binning and Roche in prep.). All of these negative effects 

make parasitized individuals both more vulnerable to and less able to escape predators.  

Lateralization has been shown to improve quick decision making (Vallortigara 

and Rogers 2005) and escape performance in fishes (Dadda et al. 2010). These 

advantages of lateralization could help parasitized fish to escape predators despite slower 

swimming speeds by allowing the fish to respond more quickly to threatening stimuli. 

This is supported by a study in which wild-caught poeciliid fish from a high-predation 

environment was found to be more highly lateralized than fish from a low-predation 

environment (Brown et al. 2004, Brown et al. 2007). 

 While our results show that parasitized S. bilineata are more highly lateralized on 

average than unparasitized individuals, the mechanism by which the parasite promotes 

lateralization remains unclear. We initially hypothesized that the relatively large size of 

the parasite in comparison to the fish would influence the turning preference of 

individuals. In this study, the parasite lengths were on average 16.4% the length of the 

fish, and a recent study of critical swimming speed in S. bilineata has shown that drag 

created by the parasite has an important effect on individual swimming performance 

(Binning and Roche in prep). We hypothesized that the asymmetrical drag created by the 

parasite would pull the fish to one side, making them prefer to turn in the direction of the 



29 

parasite. However, our results did not support this hypothesis. It may be that the parasite 

somehow causes physiological changes that lead to increased lateralization, but that 

cannot be supported by the data collected in the present study. 

4.3 Problems and Limitations of the Current Study 
 

4.3.1 Abundance Transects 
 
 Potential for biases in our methodology while conducting abundance transects 

include the possibility for error in estimating fish sizes under the water. There also may 

have been inconsistencies in estimating fish sizes due to a number of different observers 

contributing to the data. To minimize these biases, all observers spent time practicing 

estimating fish length and checking estimates against sketches of fish with known lengths 

held underwater against the reef. Observers also practiced size estimates together and 

compared estimates to ensure consistency between observers before beginning to collect 

data. 

4.3.2 Lateralization Study 
 
 Due to time constraints, the sample sizes of fish tested were small, particularly for 

parasitized fish. For logistical reasons, mainly the rarity of parasitized fish, we were 

limited by how many we could find and catch and did the best we could under the 

circumstances. The results seem reliable despite the low sample size, though the data may 

be supplemented in the future. 

4.4 Further Studies 
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 In order to investigate the mechanism through which parasitism causes increased 

lateralization, it would be interesting to attach fake parasites of similar size and weight as 

the actual parasites to unparasitized S. bilineata and run the detour test. This would 

determine whether the increased lateralization is caused solely by the drag created by the 

parasite, or if there is some physiological effect of the parasite which promotes 

lateralization. 

 To test whether parasitized S. bilineata really do have advantages in their 

responsiveness to stimuli, presumably due to higher lateralization, the fast-start 

performance behavior of parasitized fish could be compared to unparasitized fish. Traits 

such as reaction time, maximum escape speed, and rate of acceleration could be 

compared to examine whether parasitized fish appear to have a higher ability to escape 

from predators. 

4.6 Conclusions 
 
 Infection by A. nemipteri is fairly rare on S. bilineata around Lizard Island, 

indicating that this parasitism carries a high cost to the host fish, and thus cannot be 

sustained except by exceptionally strong individuals. The parasites are also more 

common in juvenile and small adult S. bilineata, indicating that these parasites prefer to 

parasitize young fish rather than fully grown adults. The high cost of parasitism and early 

stage at which S. bilineata seems to be parasitized indicate an ecologically important role 

of A. nemipteri in adding selective pressure on S. bilineata. Lateralization in turning 

behavior was increased in parasitized fish, and decreased when parasites were removed 

such that the lateralization of the formerly parasitized fish was no different from fish that 

were never parasitized. Thus it seems that parasitism leads to an increase in lateralization 
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in S. bilineata. This increase in lateralization may arise as a mechanism by which infected 

fish can compensate for the decrease in swimming performance caused by the parasitism 

to be able to better escape predators. 
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